{"title":"利用哨兵-2 的多时指数和光谱波段,以随机森林和支持向量机加强土地利用和土地覆被分类","authors":"Atefe Arfa , Masoud Minaei","doi":"10.1016/j.asr.2024.08.062","DOIUrl":null,"url":null,"abstract":"<div><div>Multitemporal imagery offers a critical advantage by capturing seasonal variations, which are essential for differentiating between land use and land cover (LULC) types. While these types may appear similar when examined at one specific time, they exhibit distinct phenological patterns across different seasons. This temporal depth is crucial for enhancing model accuracy, particularly in heterogeneous landscapes where LULC transitions are frequent and complex. This paper made use of spectral bands and indices of Sentinel-2 from April to September 2020 for LULC classification using two advanced machine learning models: Random forest (RF) and support vector machine (SVM). The spectral indices include the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and modified normalized water index (MNDWI). The dataset was divided into four temporal feature sets: April-May, June-July, August-September, and the entire period from April-September. For each two-month period, the median values of the spectral bands and indices were used. Both models were evaluated based on overall accuracy, F1-score, Kappa coefficient, precision, and recall. Results indicate that incorporating multitemporal features enhanced the performance of the chosen models, with overall accuracy increasing from 82.4% to 94.03% for RF and from 75.4% to 93.54% for SVM. Additionally, the RF algorithm demonstrated higher accuracy than the SVM model across various time periods, with notable improvements in other performance metrics. These improvements also underscore the ability of the models to leverage the rich multitemporal data provided by Sentinel-2 for accurate LULC classification. This study highlights the importance of incorporating the dynamics of features in remote sensing applications to enhance the precision and reliability of LULC classification.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing multitemporal indices and spectral bands of Sentinel-2 to enhance land use and land cover classification with random forest and support vector machine\",\"authors\":\"Atefe Arfa , Masoud Minaei\",\"doi\":\"10.1016/j.asr.2024.08.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multitemporal imagery offers a critical advantage by capturing seasonal variations, which are essential for differentiating between land use and land cover (LULC) types. While these types may appear similar when examined at one specific time, they exhibit distinct phenological patterns across different seasons. This temporal depth is crucial for enhancing model accuracy, particularly in heterogeneous landscapes where LULC transitions are frequent and complex. This paper made use of spectral bands and indices of Sentinel-2 from April to September 2020 for LULC classification using two advanced machine learning models: Random forest (RF) and support vector machine (SVM). The spectral indices include the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and modified normalized water index (MNDWI). The dataset was divided into four temporal feature sets: April-May, June-July, August-September, and the entire period from April-September. For each two-month period, the median values of the spectral bands and indices were used. Both models were evaluated based on overall accuracy, F1-score, Kappa coefficient, precision, and recall. Results indicate that incorporating multitemporal features enhanced the performance of the chosen models, with overall accuracy increasing from 82.4% to 94.03% for RF and from 75.4% to 93.54% for SVM. Additionally, the RF algorithm demonstrated higher accuracy than the SVM model across various time periods, with notable improvements in other performance metrics. These improvements also underscore the ability of the models to leverage the rich multitemporal data provided by Sentinel-2 for accurate LULC classification. This study highlights the importance of incorporating the dynamics of features in remote sensing applications to enhance the precision and reliability of LULC classification.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S027311772400886X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027311772400886X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Utilizing multitemporal indices and spectral bands of Sentinel-2 to enhance land use and land cover classification with random forest and support vector machine
Multitemporal imagery offers a critical advantage by capturing seasonal variations, which are essential for differentiating between land use and land cover (LULC) types. While these types may appear similar when examined at one specific time, they exhibit distinct phenological patterns across different seasons. This temporal depth is crucial for enhancing model accuracy, particularly in heterogeneous landscapes where LULC transitions are frequent and complex. This paper made use of spectral bands and indices of Sentinel-2 from April to September 2020 for LULC classification using two advanced machine learning models: Random forest (RF) and support vector machine (SVM). The spectral indices include the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and modified normalized water index (MNDWI). The dataset was divided into four temporal feature sets: April-May, June-July, August-September, and the entire period from April-September. For each two-month period, the median values of the spectral bands and indices were used. Both models were evaluated based on overall accuracy, F1-score, Kappa coefficient, precision, and recall. Results indicate that incorporating multitemporal features enhanced the performance of the chosen models, with overall accuracy increasing from 82.4% to 94.03% for RF and from 75.4% to 93.54% for SVM. Additionally, the RF algorithm demonstrated higher accuracy than the SVM model across various time periods, with notable improvements in other performance metrics. These improvements also underscore the ability of the models to leverage the rich multitemporal data provided by Sentinel-2 for accurate LULC classification. This study highlights the importance of incorporating the dynamics of features in remote sensing applications to enhance the precision and reliability of LULC classification.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.