{"title":"针对宇航员工作环境的跨域少量语义分割","authors":"Qingwei Sun , Jiangang Chao , Wanhong Lin","doi":"10.1016/j.asr.2024.08.069","DOIUrl":null,"url":null,"abstract":"<div><div>The study of few-shot semantic segmentation (FSS) for the astronaut work environment (AWE) is of significant importance as it enables the segmentation of unknown categories. However, general FSS methods are predicated on the assumption that the training and testing data belong to the same domain. When this assumption is invalid, the model’s performance is significantly degraded. We propose a more general approach, whereby the model is trained on a generic dataset and tested on a dedicated AWE dataset. This challenging task is referred to as cross-domain few-shot semantic segmentation (CD-FSS). A novel model, namely FTDCNet, is proposed, which comprises a domain-agnostic feature transformation module and a domain-constrained transformer. The FTDCNet model demonstrates superior performance compared to the state-of-the-art (SOTA) model, with an accuracy improvement of 11.83% and 11.42% under 1-shot and 5-shot settings, respectively.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"74 11","pages":"Pages 5934-5949"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-domain few-shot semantic segmentation for the astronaut work environment\",\"authors\":\"Qingwei Sun , Jiangang Chao , Wanhong Lin\",\"doi\":\"10.1016/j.asr.2024.08.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study of few-shot semantic segmentation (FSS) for the astronaut work environment (AWE) is of significant importance as it enables the segmentation of unknown categories. However, general FSS methods are predicated on the assumption that the training and testing data belong to the same domain. When this assumption is invalid, the model’s performance is significantly degraded. We propose a more general approach, whereby the model is trained on a generic dataset and tested on a dedicated AWE dataset. This challenging task is referred to as cross-domain few-shot semantic segmentation (CD-FSS). A novel model, namely FTDCNet, is proposed, which comprises a domain-agnostic feature transformation module and a domain-constrained transformer. The FTDCNet model demonstrates superior performance compared to the state-of-the-art (SOTA) model, with an accuracy improvement of 11.83% and 11.42% under 1-shot and 5-shot settings, respectively.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"74 11\",\"pages\":\"Pages 5934-5949\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008937\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008937","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Cross-domain few-shot semantic segmentation for the astronaut work environment
The study of few-shot semantic segmentation (FSS) for the astronaut work environment (AWE) is of significant importance as it enables the segmentation of unknown categories. However, general FSS methods are predicated on the assumption that the training and testing data belong to the same domain. When this assumption is invalid, the model’s performance is significantly degraded. We propose a more general approach, whereby the model is trained on a generic dataset and tested on a dedicated AWE dataset. This challenging task is referred to as cross-domain few-shot semantic segmentation (CD-FSS). A novel model, namely FTDCNet, is proposed, which comprises a domain-agnostic feature transformation module and a domain-constrained transformer. The FTDCNet model demonstrates superior performance compared to the state-of-the-art (SOTA) model, with an accuracy improvement of 11.83% and 11.42% under 1-shot and 5-shot settings, respectively.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.