Lei Zhao , Paul Blunt , Lei Yang , Qiyuan Zhang , Guangcai Li , Qiang Wen
{"title":"实时 GNSS PPP 和 INS 的紧密集成:无电离层组合模型与非组合模型的对比","authors":"Lei Zhao , Paul Blunt , Lei Yang , Qiyuan Zhang , Guangcai Li , Qiang Wen","doi":"10.1016/j.asr.2024.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>The GNSS Precise Point Positioning (PPP) model is usually established in either an ionospheric-free (IF) combined form or an uncombined (UC) form. These formulations can be equivalent in theory but their applications in practice could still perform differently when integrated with external sensors. In this study, we compared the positioning performance of the two PPP models tightly coupled with the Inertial Navigation System (INS) using a high-grade inertial measurement unit (IMU) in real vehicle navigation tests. The ambiguity resolution (AR) was also exploited in the two PPP models after applying the observable specific biases (OSB) to the GNSS raw code and phase measurements. According to the results, under good satellite observability the UC PPP/INS tightly-coupled integration (TCI) significantly outperforms the IF PPP/INS TCI. The UC TCI model with AR could achieve a positioning accuracy of 4.6 and 3.0 cm in the horizontal and vertical directions, which are improved by 37 % and 63 % respectively relative to the IF TCI model. However, in the case of frequent GNSS signal interruptions or poor satellite observation condition, the IF TCI model shows a superior reliability than the UC TCI. Nevertheless, when the ionospheric parameters are properly constrained in the UC TCI model, substantial improvements in terms of convergence and accuracy are obtained. The UC PPP augmented with external precise ionospheric information would greatly increase the cost, and users may select the appropriate PPP model with INS TCI in real applications in accordance with the demanded accuracy level and measuring conditions.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight integration of real-time GNSS PPP and INS: Ionosphere-free combined vs uncombined models\",\"authors\":\"Lei Zhao , Paul Blunt , Lei Yang , Qiyuan Zhang , Guangcai Li , Qiang Wen\",\"doi\":\"10.1016/j.asr.2024.08.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The GNSS Precise Point Positioning (PPP) model is usually established in either an ionospheric-free (IF) combined form or an uncombined (UC) form. These formulations can be equivalent in theory but their applications in practice could still perform differently when integrated with external sensors. In this study, we compared the positioning performance of the two PPP models tightly coupled with the Inertial Navigation System (INS) using a high-grade inertial measurement unit (IMU) in real vehicle navigation tests. The ambiguity resolution (AR) was also exploited in the two PPP models after applying the observable specific biases (OSB) to the GNSS raw code and phase measurements. According to the results, under good satellite observability the UC PPP/INS tightly-coupled integration (TCI) significantly outperforms the IF PPP/INS TCI. The UC TCI model with AR could achieve a positioning accuracy of 4.6 and 3.0 cm in the horizontal and vertical directions, which are improved by 37 % and 63 % respectively relative to the IF TCI model. However, in the case of frequent GNSS signal interruptions or poor satellite observation condition, the IF TCI model shows a superior reliability than the UC TCI. Nevertheless, when the ionospheric parameters are properly constrained in the UC TCI model, substantial improvements in terms of convergence and accuracy are obtained. The UC PPP augmented with external precise ionospheric information would greatly increase the cost, and users may select the appropriate PPP model with INS TCI in real applications in accordance with the demanded accuracy level and measuring conditions.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008561\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008561","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Tight integration of real-time GNSS PPP and INS: Ionosphere-free combined vs uncombined models
The GNSS Precise Point Positioning (PPP) model is usually established in either an ionospheric-free (IF) combined form or an uncombined (UC) form. These formulations can be equivalent in theory but their applications in practice could still perform differently when integrated with external sensors. In this study, we compared the positioning performance of the two PPP models tightly coupled with the Inertial Navigation System (INS) using a high-grade inertial measurement unit (IMU) in real vehicle navigation tests. The ambiguity resolution (AR) was also exploited in the two PPP models after applying the observable specific biases (OSB) to the GNSS raw code and phase measurements. According to the results, under good satellite observability the UC PPP/INS tightly-coupled integration (TCI) significantly outperforms the IF PPP/INS TCI. The UC TCI model with AR could achieve a positioning accuracy of 4.6 and 3.0 cm in the horizontal and vertical directions, which are improved by 37 % and 63 % respectively relative to the IF TCI model. However, in the case of frequent GNSS signal interruptions or poor satellite observation condition, the IF TCI model shows a superior reliability than the UC TCI. Nevertheless, when the ionospheric parameters are properly constrained in the UC TCI model, substantial improvements in terms of convergence and accuracy are obtained. The UC PPP augmented with external precise ionospheric information would greatly increase the cost, and users may select the appropriate PPP model with INS TCI in real applications in accordance with the demanded accuracy level and measuring conditions.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.