Long Chen, Zhihui Jin, Ke Shao, Guangyi Wang, Shuping He, Vladimir Stojanovic, Parisa Arabzadeh Bahri, Hai Wang
{"title":"通过 ELM 和障碍函数实现无人驾驶自行车的自适应积分终端滑动模式控制","authors":"Long Chen, Zhihui Jin, Ke Shao, Guangyi Wang, Shuping He, Vladimir Stojanovic, Parisa Arabzadeh Bahri, Hai Wang","doi":"10.1017/s0263574724000997","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive integral terminal sliding mode control of unmanned bicycle via ELM and barrier function\",\"authors\":\"Long Chen, Zhihui Jin, Ke Shao, Guangyi Wang, Shuping He, Vladimir Stojanovic, Parisa Arabzadeh Bahri, Hai Wang\",\"doi\":\"10.1017/s0263574724000997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000997\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000997","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Adaptive integral terminal sliding mode control of unmanned bicycle via ELM and barrier function
In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.