Jiale Qu, Guorui Leng, Han Yu, Guorong Li, Shanshan Wang, Yonggen Weng, Baorong Duan, Junjie Liu
{"title":"基于 HGB 和 DOPO 衍生物协同效应的阻燃水性聚氨酯","authors":"Jiale Qu, Guorui Leng, Han Yu, Guorong Li, Shanshan Wang, Yonggen Weng, Baorong Duan, Junjie Liu","doi":"10.1007/s11998-024-00983-8","DOIUrl":null,"url":null,"abstract":"<p>The inherent combustibility of waterborne polyurethane (WPU) with a limiting oxygen index (LOI) of only 18.0% has impeded its versatile applications in the automotive industry, furniture coatings, leather, and other domains. Therefore, enhancing the fire safety of WPU is imperative. This work reports the synthesis of novel reactive flame retardants and their subsequent chemical grafting onto WPU to ameliorate its flammability weakness. Using the novel flame-retardant intermediate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and para-hydroxybenzaldehyde as precursors, phosphorus-based flame retardants (DOPOs) were prepared. Hollow glass microspheres (HGB) were modified with a silane coupling agent (KH550) and incorporated into the WPU prepolymerization. Finally, chemical grafting occurred between the hydroxyl groups of DOPOs and the modified HGB to produce dual-component flame retardants involved in the prepolymerization. The addition of 2 wt% synergistic flame retardants to WPU increased its LOI to 26% and eliminated dripping during combustion.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame-retardant waterborne polyurethane based on the synergistic effect of HGB and DOPO derivatives\",\"authors\":\"Jiale Qu, Guorui Leng, Han Yu, Guorong Li, Shanshan Wang, Yonggen Weng, Baorong Duan, Junjie Liu\",\"doi\":\"10.1007/s11998-024-00983-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inherent combustibility of waterborne polyurethane (WPU) with a limiting oxygen index (LOI) of only 18.0% has impeded its versatile applications in the automotive industry, furniture coatings, leather, and other domains. Therefore, enhancing the fire safety of WPU is imperative. This work reports the synthesis of novel reactive flame retardants and their subsequent chemical grafting onto WPU to ameliorate its flammability weakness. Using the novel flame-retardant intermediate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and para-hydroxybenzaldehyde as precursors, phosphorus-based flame retardants (DOPOs) were prepared. Hollow glass microspheres (HGB) were modified with a silane coupling agent (KH550) and incorporated into the WPU prepolymerization. Finally, chemical grafting occurred between the hydroxyl groups of DOPOs and the modified HGB to produce dual-component flame retardants involved in the prepolymerization. The addition of 2 wt% synergistic flame retardants to WPU increased its LOI to 26% and eliminated dripping during combustion.</p>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11998-024-00983-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11998-024-00983-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Flame-retardant waterborne polyurethane based on the synergistic effect of HGB and DOPO derivatives
The inherent combustibility of waterborne polyurethane (WPU) with a limiting oxygen index (LOI) of only 18.0% has impeded its versatile applications in the automotive industry, furniture coatings, leather, and other domains. Therefore, enhancing the fire safety of WPU is imperative. This work reports the synthesis of novel reactive flame retardants and their subsequent chemical grafting onto WPU to ameliorate its flammability weakness. Using the novel flame-retardant intermediate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and para-hydroxybenzaldehyde as precursors, phosphorus-based flame retardants (DOPOs) were prepared. Hollow glass microspheres (HGB) were modified with a silane coupling agent (KH550) and incorporated into the WPU prepolymerization. Finally, chemical grafting occurred between the hydroxyl groups of DOPOs and the modified HGB to produce dual-component flame retardants involved in the prepolymerization. The addition of 2 wt% synergistic flame retardants to WPU increased its LOI to 26% and eliminated dripping during combustion.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.