挖掘教育大数据,开发学困生早期预警动态模型:概念验证

IF 1.9 4区 教育学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Xiaoxia Chen, Xiaolong Xu
{"title":"挖掘教育大数据,开发学困生早期预警动态模型:概念验证","authors":"Xiaoxia Chen, Xiaolong Xu","doi":"10.1080/14703297.2024.2396092","DOIUrl":null,"url":null,"abstract":"Educational big data has great predictive power to identify academically at-risk students. Based on fully mining educational big data, this study developed an early alert dynamic model of academica...","PeriodicalId":47628,"journal":{"name":"Innovations in Education and Teaching International","volume":"205 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining educational big data to develop an early alert dynamic model of academically at-risk students: A proof of concept\",\"authors\":\"Xiaoxia Chen, Xiaolong Xu\",\"doi\":\"10.1080/14703297.2024.2396092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Educational big data has great predictive power to identify academically at-risk students. Based on fully mining educational big data, this study developed an early alert dynamic model of academica...\",\"PeriodicalId\":47628,\"journal\":{\"name\":\"Innovations in Education and Teaching International\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Education and Teaching International\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/14703297.2024.2396092\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Education and Teaching International","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/14703297.2024.2396092","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

教育大数据对学业风险学生的识别具有很强的预测能力。本研究在充分挖掘教育大数据的基础上,建立了学业风险学生的预警动态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining educational big data to develop an early alert dynamic model of academically at-risk students: A proof of concept
Educational big data has great predictive power to identify academically at-risk students. Based on fully mining educational big data, this study developed an early alert dynamic model of academica...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innovations in Education and Teaching International
Innovations in Education and Teaching International EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
4.80
自引率
5.60%
发文量
68
期刊介绍: Innovations in Education and Teaching International (IETI), is the journal of the Staff and Educational Development Association (SEDA) www.seda.ac.uk. As such, contributions to the Journal should reflect SEDA"s aim to promote innovation and good practice in higher education through staff and educational development and subject-related practices. Contributions are welcomed on any aspect of promoting and supporting educational change in higher and other post-school education, with an emphasis on research, experience, scholarship and evaluation, rather than mere description of practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信