加藤对惰性素数上反旋转 CM 变形的ε猜想

Pub Date : 2024-08-10 DOI:10.1016/j.jnt.2024.06.014
Ashay A. Burungale, Shinichi Kobayashi, Kazuto Ota, Seidai Yasuda
{"title":"加藤对惰性素数上反旋转 CM 变形的ε猜想","authors":"Ashay A. Burungale, Shinichi Kobayashi, Kazuto Ota, Seidai Yasuda","doi":"10.1016/j.jnt.2024.06.014","DOIUrl":null,"url":null,"abstract":"We present an explicit construction of Kato's local epsilon isomorphism for the anticyclotomic deformation of a Lubin-Tate formal group of height two by using Rubin's theory on local units in the anticyclotomic tower. We also prove Kato's global epsilon conjecture for the anticyclotomic deformation of a CM elliptic curve at an inert prime.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kato's epsilon conjecture for anticyclotomic CM deformations at inert primes\",\"authors\":\"Ashay A. Burungale, Shinichi Kobayashi, Kazuto Ota, Seidai Yasuda\",\"doi\":\"10.1016/j.jnt.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an explicit construction of Kato's local epsilon isomorphism for the anticyclotomic deformation of a Lubin-Tate formal group of height two by using Rubin's theory on local units in the anticyclotomic tower. We also prove Kato's global epsilon conjecture for the anticyclotomic deformation of a CM elliptic curve at an inert prime.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnt.2024.06.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jnt.2024.06.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用鲁宾关于反循环塔中局部单元的理论,为高度为二的卢宾-塔特形式群的反循环变形提出了加藤局部ε同构的明确构造。我们还证明了加藤关于 CM 椭圆曲线在惰性素数处反循环变形的全局ε猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kato's epsilon conjecture for anticyclotomic CM deformations at inert primes
We present an explicit construction of Kato's local epsilon isomorphism for the anticyclotomic deformation of a Lubin-Tate formal group of height two by using Rubin's theory on local units in the anticyclotomic tower. We also prove Kato's global epsilon conjecture for the anticyclotomic deformation of a CM elliptic curve at an inert prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信