Dongwei Wang, Binghao Zhao, Yu Wei, Jun Yang, Gengkai Hu
{"title":"液压消音器的材料设计","authors":"Dongwei Wang, Binghao Zhao, Yu Wei, Jun Yang, Gengkai Hu","doi":"10.1103/physrevapplied.22.034010","DOIUrl":null,"url":null,"abstract":"Mitigation of fluid-borne noise in hydraulic power systems is of paramount importance for both machine reliability and human comfort. One typical approach involves using compliant inline hydraulic silencers to lower the sound speed within devices, e.g., pressurized bladders or syntactic foams. However, the exploration of innovative compliant materials for silencer designs has been limited; this is largely due to the absence of a comprehensive model that can accommodate a large range of anisotropic materials to evaluate the performance of hydraulic silencers. In this work, we develop a general analytical model for silencer design that incorporates anisotropic reflective materials. The model enables us to identify optimized solutions within a broader material spectrum, tailored to meet pressure-resistance requirements. Building upon these insights, we design and fabricate an anisotropic compliant metallic lattice with low impedance and integrate it into a hydraulic silencer as the reflective material. Experimental results demonstrate that this silencer can achieve an average sound-transmission loss of 21 dB across a frequency range of 100 Hz to 2 kHz, in good agreement with predictions from our proposed model. This work paves the way for selecting and designing innovative materials for the mitigation of hydraulic noise.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material design for hydraulic silencers\",\"authors\":\"Dongwei Wang, Binghao Zhao, Yu Wei, Jun Yang, Gengkai Hu\",\"doi\":\"10.1103/physrevapplied.22.034010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitigation of fluid-borne noise in hydraulic power systems is of paramount importance for both machine reliability and human comfort. One typical approach involves using compliant inline hydraulic silencers to lower the sound speed within devices, e.g., pressurized bladders or syntactic foams. However, the exploration of innovative compliant materials for silencer designs has been limited; this is largely due to the absence of a comprehensive model that can accommodate a large range of anisotropic materials to evaluate the performance of hydraulic silencers. In this work, we develop a general analytical model for silencer design that incorporates anisotropic reflective materials. The model enables us to identify optimized solutions within a broader material spectrum, tailored to meet pressure-resistance requirements. Building upon these insights, we design and fabricate an anisotropic compliant metallic lattice with low impedance and integrate it into a hydraulic silencer as the reflective material. Experimental results demonstrate that this silencer can achieve an average sound-transmission loss of 21 dB across a frequency range of 100 Hz to 2 kHz, in good agreement with predictions from our proposed model. This work paves the way for selecting and designing innovative materials for the mitigation of hydraulic noise.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034010\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034010","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Mitigation of fluid-borne noise in hydraulic power systems is of paramount importance for both machine reliability and human comfort. One typical approach involves using compliant inline hydraulic silencers to lower the sound speed within devices, e.g., pressurized bladders or syntactic foams. However, the exploration of innovative compliant materials for silencer designs has been limited; this is largely due to the absence of a comprehensive model that can accommodate a large range of anisotropic materials to evaluate the performance of hydraulic silencers. In this work, we develop a general analytical model for silencer design that incorporates anisotropic reflective materials. The model enables us to identify optimized solutions within a broader material spectrum, tailored to meet pressure-resistance requirements. Building upon these insights, we design and fabricate an anisotropic compliant metallic lattice with low impedance and integrate it into a hydraulic silencer as the reflective material. Experimental results demonstrate that this silencer can achieve an average sound-transmission loss of 21 dB across a frequency range of 100 Hz to 2 kHz, in good agreement with predictions from our proposed model. This work paves the way for selecting and designing innovative materials for the mitigation of hydraulic noise.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.