{"title":"堆叠式锂氧电池的自动机器人电池制造技术","authors":"Shoichi Matsuda, Shin Kimura, Misato Takahashi","doi":"10.1002/batt.202400509","DOIUrl":null,"url":null,"abstract":"Rechargeable lithium‐oxygen batteries (LOBs) are gaining interest as next‐generation energy storage devices due to their superior theoretical energy density. While recent years have seen successful operation of LOBs with high cell‐level energy density, the technology for cell fabrication is still in its infancy. This is because the cell fabrication procedure for LOBs is quite different from that of conventional lithium‐ion batteries. The study presents a fully automated sequential robotic experimental setup for the fabrication of stacked‐type LOB cells. This approach allows for high accuracy and high throughput fabrication of the cells. The developed system enables the fabrication of over 80 cells per day, which is 10 times higher than conventional human‐based experiments. In addition, the high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. The effectiveness of the developed system was also confirmed by investigating a multi‐component electrolyte to maximize battery performance. We believe the methodology demonstrated in the present study is beneficial for accelerating the research and development of LOBs.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Robotic Cell Fabrication Technology for Stacked‐type Lithium‐Oxygen Batteries\",\"authors\":\"Shoichi Matsuda, Shin Kimura, Misato Takahashi\",\"doi\":\"10.1002/batt.202400509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable lithium‐oxygen batteries (LOBs) are gaining interest as next‐generation energy storage devices due to their superior theoretical energy density. While recent years have seen successful operation of LOBs with high cell‐level energy density, the technology for cell fabrication is still in its infancy. This is because the cell fabrication procedure for LOBs is quite different from that of conventional lithium‐ion batteries. The study presents a fully automated sequential robotic experimental setup for the fabrication of stacked‐type LOB cells. This approach allows for high accuracy and high throughput fabrication of the cells. The developed system enables the fabrication of over 80 cells per day, which is 10 times higher than conventional human‐based experiments. In addition, the high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. The effectiveness of the developed system was also confirmed by investigating a multi‐component electrolyte to maximize battery performance. We believe the methodology demonstrated in the present study is beneficial for accelerating the research and development of LOBs.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400509\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400509","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Automated Robotic Cell Fabrication Technology for Stacked‐type Lithium‐Oxygen Batteries
Rechargeable lithium‐oxygen batteries (LOBs) are gaining interest as next‐generation energy storage devices due to their superior theoretical energy density. While recent years have seen successful operation of LOBs with high cell‐level energy density, the technology for cell fabrication is still in its infancy. This is because the cell fabrication procedure for LOBs is quite different from that of conventional lithium‐ion batteries. The study presents a fully automated sequential robotic experimental setup for the fabrication of stacked‐type LOB cells. This approach allows for high accuracy and high throughput fabrication of the cells. The developed system enables the fabrication of over 80 cells per day, which is 10 times higher than conventional human‐based experiments. In addition, the high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. The effectiveness of the developed system was also confirmed by investigating a multi‐component electrolyte to maximize battery performance. We believe the methodology demonstrated in the present study is beneficial for accelerating the research and development of LOBs.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.