Javier F. Troncoso, Franco M. Zanotto, Diego E. Galvez-Aranda, Diana Zapata Dominguez, Lucie Denisart, Alejandro A. Franco
{"title":"ARTISTIC 电池制造数字化计划:从基础研究到产业化","authors":"Javier F. Troncoso, Franco M. Zanotto, Diego E. Galvez-Aranda, Diana Zapata Dominguez, Lucie Denisart, Alejandro A. Franco","doi":"10.1002/batt.202400385","DOIUrl":null,"url":null,"abstract":"Our ARTISTIC project was born in 2018 to improve the efficiency of lithium‐ion battery cell manufacturing process through computational modelling, allowing the research and development of new digital tools to accelerate the optimization of this process. Thanks to the development and use of innovative numerical models, machine learning algorithms and virtual and mixed reality tools, we could significantly advance the understanding of manufacturing/performance battery‐cell performance relationships. However, scientific research by itself is not enough to bring innovations into practical applications for society. The creation of spin‐offs or start‐ups can ease the transition from research to application, since it allows scaling up the research outputs into products or services ready‐to‐use by the customers. In this Concept, we discuss the benefits of this transition, we introduce the research findings obtained in the last years within the framework of our ARTISTIC project, and our actions to move from our research to industrial products.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization\",\"authors\":\"Javier F. Troncoso, Franco M. Zanotto, Diego E. Galvez-Aranda, Diana Zapata Dominguez, Lucie Denisart, Alejandro A. Franco\",\"doi\":\"10.1002/batt.202400385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our ARTISTIC project was born in 2018 to improve the efficiency of lithium‐ion battery cell manufacturing process through computational modelling, allowing the research and development of new digital tools to accelerate the optimization of this process. Thanks to the development and use of innovative numerical models, machine learning algorithms and virtual and mixed reality tools, we could significantly advance the understanding of manufacturing/performance battery‐cell performance relationships. However, scientific research by itself is not enough to bring innovations into practical applications for society. The creation of spin‐offs or start‐ups can ease the transition from research to application, since it allows scaling up the research outputs into products or services ready‐to‐use by the customers. In this Concept, we discuss the benefits of this transition, we introduce the research findings obtained in the last years within the framework of our ARTISTIC project, and our actions to move from our research to industrial products.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400385\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400385","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization
Our ARTISTIC project was born in 2018 to improve the efficiency of lithium‐ion battery cell manufacturing process through computational modelling, allowing the research and development of new digital tools to accelerate the optimization of this process. Thanks to the development and use of innovative numerical models, machine learning algorithms and virtual and mixed reality tools, we could significantly advance the understanding of manufacturing/performance battery‐cell performance relationships. However, scientific research by itself is not enough to bring innovations into practical applications for society. The creation of spin‐offs or start‐ups can ease the transition from research to application, since it allows scaling up the research outputs into products or services ready‐to‐use by the customers. In this Concept, we discuss the benefits of this transition, we introduce the research findings obtained in the last years within the framework of our ARTISTIC project, and our actions to move from our research to industrial products.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.