添加剂制造的 316L 不锈钢的疲劳响应

IF 2.6 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Metals Pub Date : 2024-08-29 DOI:10.3390/met14090988
Melody Chepkoech, Peter Omoniyi, Gbadebo Owolabi
{"title":"添加剂制造的 316L 不锈钢的疲劳响应","authors":"Melody Chepkoech, Peter Omoniyi, Gbadebo Owolabi","doi":"10.3390/met14090988","DOIUrl":null,"url":null,"abstract":"This study investigated the fatigue performance of 316L stainless steel fabricated via laser powder bed fusion (LPBF). Stress-controlled fatigue tests were performed at different stress amplitudes on vertically built samples using a frequency of 15 Hz and a stress ratio of 0.1. The stress amplitudes were varied to provide the cyclic response of the materials under a range of loading conditions. The average fatigue strength was determined to be 92.94 MPa, corresponding to a maximum stress of 185.87 MPa. The microstructures were observed through scanning electron microscopy (SEM) with the aid of electron backscattered diffraction (EBSD), and the average grain size of the as-built samples was determined to be 15.6 µm, with most grains having a <110> preferred crystallographic orientation. A higher kernel average misorientation value was measured on the deformed surfaces, revealing the increased misorientation of the grains. Defects were observed on the fractured surfaces acting as crack initiators while deflecting the crack propagation paths. The fatigue failure mode for the LPBF 316L samples was ductile, as illustrated by the numerous dimples on fracture surfaces and fatigue striations.","PeriodicalId":18461,"journal":{"name":"Metals","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Response of Additive-Manufactured 316L Stainless Steel\",\"authors\":\"Melody Chepkoech, Peter Omoniyi, Gbadebo Owolabi\",\"doi\":\"10.3390/met14090988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the fatigue performance of 316L stainless steel fabricated via laser powder bed fusion (LPBF). Stress-controlled fatigue tests were performed at different stress amplitudes on vertically built samples using a frequency of 15 Hz and a stress ratio of 0.1. The stress amplitudes were varied to provide the cyclic response of the materials under a range of loading conditions. The average fatigue strength was determined to be 92.94 MPa, corresponding to a maximum stress of 185.87 MPa. The microstructures were observed through scanning electron microscopy (SEM) with the aid of electron backscattered diffraction (EBSD), and the average grain size of the as-built samples was determined to be 15.6 µm, with most grains having a <110> preferred crystallographic orientation. A higher kernel average misorientation value was measured on the deformed surfaces, revealing the increased misorientation of the grains. Defects were observed on the fractured surfaces acting as crack initiators while deflecting the crack propagation paths. The fatigue failure mode for the LPBF 316L samples was ductile, as illustrated by the numerous dimples on fracture surfaces and fatigue striations.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14090988\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14090988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了通过激光粉末熔床(LPBF)制造的 316L 不锈钢的疲劳性能。在频率为 15 Hz、应力比为 0.1 的条件下,对垂直制造的样品进行了不同应力振幅的应力控制疲劳试验。应力振幅的变化提供了材料在一系列加载条件下的循环响应。平均疲劳强度为 92.94 兆帕,对应的最大应力为 185.87 兆帕。通过扫描电子显微镜(SEM)和电子反向散射衍射(EBSD)对微观结构进行了观察,确定雏形样品的平均晶粒大小为 15.6 微米,大多数晶粒具有优先结晶取向。在变形表面测得的内核平均错向值较高,表明晶粒的错向增加。在断裂表面观察到的缺陷既是裂纹的起始点,又偏转了裂纹的传播路径。LPBF 316L 样品的疲劳失效模式是韧性的,断裂表面的大量凹痕和疲劳条纹说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Response of Additive-Manufactured 316L Stainless Steel
This study investigated the fatigue performance of 316L stainless steel fabricated via laser powder bed fusion (LPBF). Stress-controlled fatigue tests were performed at different stress amplitudes on vertically built samples using a frequency of 15 Hz and a stress ratio of 0.1. The stress amplitudes were varied to provide the cyclic response of the materials under a range of loading conditions. The average fatigue strength was determined to be 92.94 MPa, corresponding to a maximum stress of 185.87 MPa. The microstructures were observed through scanning electron microscopy (SEM) with the aid of electron backscattered diffraction (EBSD), and the average grain size of the as-built samples was determined to be 15.6 µm, with most grains having a <110> preferred crystallographic orientation. A higher kernel average misorientation value was measured on the deformed surfaces, revealing the increased misorientation of the grains. Defects were observed on the fractured surfaces acting as crack initiators while deflecting the crack propagation paths. The fatigue failure mode for the LPBF 316L samples was ductile, as illustrated by the numerous dimples on fracture surfaces and fatigue striations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals
Metals MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
4.90
自引率
13.80%
发文量
1832
审稿时长
1.5 months
期刊介绍: Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信