{"title":"快速凝固法获得的硅胶的微观结构和摩擦系数","authors":"O. V. Gusakova, V. G. Shepelevich","doi":"10.3103/S1068366624700107","DOIUrl":null,"url":null,"abstract":"<p>The results of a study of the tribological properties and microstructure of rapidly solidified Al–12.2 wt % Si–0.2 wt % Fe (AK12vp) and Al–12.5 wt % Si–0.8 wt % Mg–0.4 wt % Mn–0.7 wt % Fe–0.9 wt % Ni—1.7 wt %, Cu (Al–Si–M) alloys are presented. The effect of multicomponent alloying on the microstructure of near-eutectic silumin was studied using scanning electron microscopy and X-ray spectrometry. Multicomponent alloying of the Al–Si eutectic alloy with magnesium, manganese, iron, nickel, and copper leads to a reduction in the size of the primary α-Al dendrites to 3–4 μm. Tribological tests carried out under conditions of dry friction with reciprocating motion of the indenter showed that alloying by metals of rapidly solidified eutectic silumin leads to a reduction in the coefficient of friction by 25%. An analysis of the surface state of the track showed that, as a result of deformation heating, the oxidation of the α-Al phase occurs, the destruction of the oxide film, which represents the third body, and its removal beyond the track. The fragmentation of silicon plates in the track area into nano-sized particles was also obtained. The impact of the indenter also leads to a uniform distribution of equiaxed particles of intermetallic compounds while maintaining their phase composition.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Coefficient of Friction of Silumins Obtained by Rapid Solidification\",\"authors\":\"O. V. Gusakova, V. G. Shepelevich\",\"doi\":\"10.3103/S1068366624700107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of a study of the tribological properties and microstructure of rapidly solidified Al–12.2 wt % Si–0.2 wt % Fe (AK12vp) and Al–12.5 wt % Si–0.8 wt % Mg–0.4 wt % Mn–0.7 wt % Fe–0.9 wt % Ni—1.7 wt %, Cu (Al–Si–M) alloys are presented. The effect of multicomponent alloying on the microstructure of near-eutectic silumin was studied using scanning electron microscopy and X-ray spectrometry. Multicomponent alloying of the Al–Si eutectic alloy with magnesium, manganese, iron, nickel, and copper leads to a reduction in the size of the primary α-Al dendrites to 3–4 μm. Tribological tests carried out under conditions of dry friction with reciprocating motion of the indenter showed that alloying by metals of rapidly solidified eutectic silumin leads to a reduction in the coefficient of friction by 25%. An analysis of the surface state of the track showed that, as a result of deformation heating, the oxidation of the α-Al phase occurs, the destruction of the oxide film, which represents the third body, and its removal beyond the track. The fragmentation of silicon plates in the track area into nano-sized particles was also obtained. The impact of the indenter also leads to a uniform distribution of equiaxed particles of intermetallic compounds while maintaining their phase composition.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366624700107\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366624700107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Microstructure and Coefficient of Friction of Silumins Obtained by Rapid Solidification
The results of a study of the tribological properties and microstructure of rapidly solidified Al–12.2 wt % Si–0.2 wt % Fe (AK12vp) and Al–12.5 wt % Si–0.8 wt % Mg–0.4 wt % Mn–0.7 wt % Fe–0.9 wt % Ni—1.7 wt %, Cu (Al–Si–M) alloys are presented. The effect of multicomponent alloying on the microstructure of near-eutectic silumin was studied using scanning electron microscopy and X-ray spectrometry. Multicomponent alloying of the Al–Si eutectic alloy with magnesium, manganese, iron, nickel, and copper leads to a reduction in the size of the primary α-Al dendrites to 3–4 μm. Tribological tests carried out under conditions of dry friction with reciprocating motion of the indenter showed that alloying by metals of rapidly solidified eutectic silumin leads to a reduction in the coefficient of friction by 25%. An analysis of the surface state of the track showed that, as a result of deformation heating, the oxidation of the α-Al phase occurs, the destruction of the oxide film, which represents the third body, and its removal beyond the track. The fragmentation of silicon plates in the track area into nano-sized particles was also obtained. The impact of the indenter also leads to a uniform distribution of equiaxed particles of intermetallic compounds while maintaining their phase composition.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.