{"title":"具有贝氏体铁素体和/或马氏体基体结构的超高强度 TRIP 辅助钢中剪切冲压表层损伤的评估","authors":"Koh-ichi Sugimoto, Shoya Shioiri, Junya Kobayashi, Tomohiko Hojo","doi":"10.3390/met14091034","DOIUrl":null,"url":null,"abstract":"The damage to the shear-punched surface layers such as strain-hardening, strain-induced martensite transformation, and micro-void initiation behaviors was evaluated in the third-generation low-carbon advanced ultrahigh-strength TRIP-aided bainitic ferrite (TBF), bainitic ferrite–martensite (TBM), and martensite (TM) steels. In addition, the surface layer damage was related to (1) the mean normal stress generated during shear-punching and (2) microstructural properties such as the matrix structure, retained austenite characteristics, and second-phase properties. The shear-punched surface layer damage was produced under the mean normal stress between zero and negative in all the steels. The TBM and TM steels achieved relatively small surface layer damage. The small surface layer damage resulted in excellent cold stretch-flangeability, with a high crack-propagation/void-connection resistance on hole expansion.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Shear-Punched Surface Layer Damage in Ultrahigh-Strength TRIP-Aided Steels with Bainitic Ferrite and/or Martensite Matrix Structure\",\"authors\":\"Koh-ichi Sugimoto, Shoya Shioiri, Junya Kobayashi, Tomohiko Hojo\",\"doi\":\"10.3390/met14091034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The damage to the shear-punched surface layers such as strain-hardening, strain-induced martensite transformation, and micro-void initiation behaviors was evaluated in the third-generation low-carbon advanced ultrahigh-strength TRIP-aided bainitic ferrite (TBF), bainitic ferrite–martensite (TBM), and martensite (TM) steels. In addition, the surface layer damage was related to (1) the mean normal stress generated during shear-punching and (2) microstructural properties such as the matrix structure, retained austenite characteristics, and second-phase properties. The shear-punched surface layer damage was produced under the mean normal stress between zero and negative in all the steels. The TBM and TM steels achieved relatively small surface layer damage. The small surface layer damage resulted in excellent cold stretch-flangeability, with a high crack-propagation/void-connection resistance on hole expansion.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14091034\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of Shear-Punched Surface Layer Damage in Ultrahigh-Strength TRIP-Aided Steels with Bainitic Ferrite and/or Martensite Matrix Structure
The damage to the shear-punched surface layers such as strain-hardening, strain-induced martensite transformation, and micro-void initiation behaviors was evaluated in the third-generation low-carbon advanced ultrahigh-strength TRIP-aided bainitic ferrite (TBF), bainitic ferrite–martensite (TBM), and martensite (TM) steels. In addition, the surface layer damage was related to (1) the mean normal stress generated during shear-punching and (2) microstructural properties such as the matrix structure, retained austenite characteristics, and second-phase properties. The shear-punched surface layer damage was produced under the mean normal stress between zero and negative in all the steels. The TBM and TM steels achieved relatively small surface layer damage. The small surface layer damage resulted in excellent cold stretch-flangeability, with a high crack-propagation/void-connection resistance on hole expansion.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.