J. Bellessa, J. Bloch, E. Deleporte, V. M. Menon, H. S. Nguyen, H. Ohadi, S. Ravets, T. Boulier
{"title":"激子-极化子材料:利用半导体的多样性","authors":"J. Bellessa, J. Bloch, E. Deleporte, V. M. Menon, H. S. Nguyen, H. Ohadi, S. Ravets, T. Boulier","doi":"10.1557/s43577-024-00779-6","DOIUrl":null,"url":null,"abstract":"<p>The regime of strong coupling between photons and excitons gives rise to hybrid light–matter particles with fascinating properties and powerful implications for semiconductor quantum technologies. As the properties of excitons crucially depend on their host crystal, a rich field of exciton–polariton engineering opens by exploiting the diversity of semiconductors currently available. From dimensionality to binding energy to unusual orbitals, various materials provide different fundamental exciton properties that are often complementary, enabling vast engineering possibilities. This article aims to showcase some of the main materials for strong light–matter engineering, focusing on their fundamental complementarity and what this entails for future quantum technologies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"7 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Materials for excitons–polaritons: Exploiting the diversity of semiconductors\",\"authors\":\"J. Bellessa, J. Bloch, E. Deleporte, V. M. Menon, H. S. Nguyen, H. Ohadi, S. Ravets, T. Boulier\",\"doi\":\"10.1557/s43577-024-00779-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regime of strong coupling between photons and excitons gives rise to hybrid light–matter particles with fascinating properties and powerful implications for semiconductor quantum technologies. As the properties of excitons crucially depend on their host crystal, a rich field of exciton–polariton engineering opens by exploiting the diversity of semiconductors currently available. From dimensionality to binding energy to unusual orbitals, various materials provide different fundamental exciton properties that are often complementary, enabling vast engineering possibilities. This article aims to showcase some of the main materials for strong light–matter engineering, focusing on their fundamental complementarity and what this entails for future quantum technologies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00779-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00779-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials for excitons–polaritons: Exploiting the diversity of semiconductors
The regime of strong coupling between photons and excitons gives rise to hybrid light–matter particles with fascinating properties and powerful implications for semiconductor quantum technologies. As the properties of excitons crucially depend on their host crystal, a rich field of exciton–polariton engineering opens by exploiting the diversity of semiconductors currently available. From dimensionality to binding energy to unusual orbitals, various materials provide different fundamental exciton properties that are often complementary, enabling vast engineering possibilities. This article aims to showcase some of the main materials for strong light–matter engineering, focusing on their fundamental complementarity and what this entails for future quantum technologies.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.