Justin Spilker, Rebecca C. Levy, Daniel P. Marrone, Stacey Alberts, Scott C. Chapman, Mark Dickinson, Eiichi Egami, Ryan Endsley, Desika Narayanan, George Rieke, Antony A. Stark, Alexander Tielens, Christopher K. Walker
{"title":"利用单口径大型宇宙研究望远镜(SALTUS)空间观测站进行高红移河外星系科学研究","authors":"Justin Spilker, Rebecca C. Levy, Daniel P. Marrone, Stacey Alberts, Scott C. Chapman, Mark Dickinson, Eiichi Egami, Ryan Endsley, Desika Narayanan, George Rieke, Antony A. Stark, Alexander Tielens, Christopher K. Walker","doi":"10.1117/1.jatis.10.4.042305","DOIUrl":null,"url":null,"abstract":"We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-redshift extragalactic science with the Single Aperture Large Telescope for Universe Studies (SALTUS) space observatory\",\"authors\":\"Justin Spilker, Rebecca C. Levy, Daniel P. Marrone, Stacey Alberts, Scott C. Chapman, Mark Dickinson, Eiichi Egami, Ryan Endsley, Desika Narayanan, George Rieke, Antony A. Stark, Alexander Tielens, Christopher K. Walker\",\"doi\":\"10.1117/1.jatis.10.4.042305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.10.4.042305\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.4.042305","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
我们概述了美国国家航空航天局(National Aeronautics and Space Administration)探测器级远红外(IR)任务概念--单孔大型宇宙研究望远镜(SALTUS)的高红移河外星系科学案例。与以往的远红外任务相比,SALTUS 的 14 米主反射镜大大提高了空间分辨率和光谱灵敏度。SALTUS 将是一个能够满足 2030 年代银河系外科学需求的多功能观测站,也是 JWST 近红外和中红外能力的自然后续。SALTUS的主要早期宇宙科学目标侧重于了解星系反馈过程在整个宇宙时间内调节星系生长的作用,以及绘制从早期宇宙到现在的金属和尘埃崛起图。我们总结了这些科学案例以及与高红移观测最相关的性能指标。
High-redshift extragalactic science with the Single Aperture Large Telescope for Universe Studies (SALTUS) space observatory
We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.