Yiliang Wang, Yi Zheng, Chenlei Fang, Haobin Shi, Wei Pan
{"title":"针对独立于测量设备的实用连续可变量子密钥分发系统的光注入攻击","authors":"Yiliang Wang, Yi Zheng, Chenlei Fang, Haobin Shi, Wei Pan","doi":"10.1364/oe.537325","DOIUrl":null,"url":null,"abstract":"Continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) can defend all detection-side attacks effectively. Therefore, the source side is the final battlefield for performing quantum hacking attacks. This paper investigates the practical security of a CV-MDI QKD system under a light-injection attack. Here, we first describe two different light-injection attacks, i.e., the induced-photorefractive attack and the strong-power injection attack. Then, we consider three attack cases where Eve only attacks one of the parties or both parties of the CV-MDI QKD system. Based on the analysis of the parameter estimation, we find that the legitimate communication parties will overestimate the secret key rate of the system under the effect of a light-injection attack. This opens a security loophole for Eve to successfully obtain secret key information in a practical CV-MDI QKD system. In particular, compared to the laser-damage attack, the above attacks use a lower power of injected light and have a more serious effect on the security of the system. To eliminate the above effects, we can enhance the practical security of the system by doping the lithium niobate material with various impurities or by using protective devices, such as optical isolators, circulators, optical power limiters, and narrow-band filters. Apart from these, we can also use an intensity monitor or a photodetector to detect the light-injection attack.","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-injection attack against practical continuous-variable measurement-device-independent quantum key distribution systems\",\"authors\":\"Yiliang Wang, Yi Zheng, Chenlei Fang, Haobin Shi, Wei Pan\",\"doi\":\"10.1364/oe.537325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) can defend all detection-side attacks effectively. Therefore, the source side is the final battlefield for performing quantum hacking attacks. This paper investigates the practical security of a CV-MDI QKD system under a light-injection attack. Here, we first describe two different light-injection attacks, i.e., the induced-photorefractive attack and the strong-power injection attack. Then, we consider three attack cases where Eve only attacks one of the parties or both parties of the CV-MDI QKD system. Based on the analysis of the parameter estimation, we find that the legitimate communication parties will overestimate the secret key rate of the system under the effect of a light-injection attack. This opens a security loophole for Eve to successfully obtain secret key information in a practical CV-MDI QKD system. In particular, compared to the laser-damage attack, the above attacks use a lower power of injected light and have a more serious effect on the security of the system. To eliminate the above effects, we can enhance the practical security of the system by doping the lithium niobate material with various impurities or by using protective devices, such as optical isolators, circulators, optical power limiters, and narrow-band filters. Apart from these, we can also use an intensity monitor or a photodetector to detect the light-injection attack.\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/oe.537325\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/oe.537325","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Light-injection attack against practical continuous-variable measurement-device-independent quantum key distribution systems
Continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) can defend all detection-side attacks effectively. Therefore, the source side is the final battlefield for performing quantum hacking attacks. This paper investigates the practical security of a CV-MDI QKD system under a light-injection attack. Here, we first describe two different light-injection attacks, i.e., the induced-photorefractive attack and the strong-power injection attack. Then, we consider three attack cases where Eve only attacks one of the parties or both parties of the CV-MDI QKD system. Based on the analysis of the parameter estimation, we find that the legitimate communication parties will overestimate the secret key rate of the system under the effect of a light-injection attack. This opens a security loophole for Eve to successfully obtain secret key information in a practical CV-MDI QKD system. In particular, compared to the laser-damage attack, the above attacks use a lower power of injected light and have a more serious effect on the security of the system. To eliminate the above effects, we can enhance the practical security of the system by doping the lithium niobate material with various impurities or by using protective devices, such as optical isolators, circulators, optical power limiters, and narrow-band filters. Apart from these, we can also use an intensity monitor or a photodetector to detect the light-injection attack.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.