{"title":"一维可逆窖藏自动机的完全遍历性","authors":"Naoto Shiraishi, Shinji Takesue","doi":"arxiv-2408.06691","DOIUrl":null,"url":null,"abstract":"Exactly ergodicity in boundary-driven semi-infinite cellular automata (CA)\nare investigated. We establish all the ergodic rules in CA with 3, 4, and 5\nstates. We analytically prove the ergodicity for 12 rules in 3-state CA and\n118320 rules in 5-state CA with any ergodic and periodic boundary condition,\nand numerically confirm all the other rules non-ergodic with some boundary\ncondition. We classify ergodic rules into several patterns, which exhibit a\nvariety of ergodic structure.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete ergodicity in one-dimensional reversible cellar automata\",\"authors\":\"Naoto Shiraishi, Shinji Takesue\",\"doi\":\"arxiv-2408.06691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exactly ergodicity in boundary-driven semi-infinite cellular automata (CA)\\nare investigated. We establish all the ergodic rules in CA with 3, 4, and 5\\nstates. We analytically prove the ergodicity for 12 rules in 3-state CA and\\n118320 rules in 5-state CA with any ergodic and periodic boundary condition,\\nand numerically confirm all the other rules non-ergodic with some boundary\\ncondition. We classify ergodic rules into several patterns, which exhibit a\\nvariety of ergodic structure.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了边界驱动半无限蜂窝自动机(CA)中的精确遍历性。我们建立了 3、4 和 5 态 CA 中的所有遍历规则。我们分析证明了 3 态 CA 中的 12 条规则和 5 态 CA 中的 118320 条规则在任意遍历和周期边界条件下的遍历性,并用数值证实了所有其他规则在某些边界条件下的非遍历性。我们将遍历规则分为几种模式,它们表现出多种多样的遍历结构。
Complete ergodicity in one-dimensional reversible cellar automata
Exactly ergodicity in boundary-driven semi-infinite cellular automata (CA)
are investigated. We establish all the ergodic rules in CA with 3, 4, and 5
states. We analytically prove the ergodicity for 12 rules in 3-state CA and
118320 rules in 5-state CA with any ergodic and periodic boundary condition,
and numerically confirm all the other rules non-ergodic with some boundary
condition. We classify ergodic rules into several patterns, which exhibit a
variety of ergodic structure.