Manoj Koorgalli Manju, Jamballi G. Manjunatha, Kanathappa Bhimaraya, Samar A. Aldossari, Saikh Mohammad, Mika Sillanpää
{"title":"使用电化学聚合 L-丙氨酸修饰的碳纳米管糊状电极同时电化学检测对苯二酚和邻苯二酚","authors":"Manoj Koorgalli Manju, Jamballi G. Manjunatha, Kanathappa Bhimaraya, Samar A. Aldossari, Saikh Mohammad, Mika Sillanpää","doi":"10.1007/s11696-024-03652-7","DOIUrl":null,"url":null,"abstract":"<div><p>An electrochemical analysis of Hydroquinone (HDQ) and Catechol (CTL) was analyzing in a 0.2 M phosphate buffer solution (PBS) using a modest constructing electrochemically polymerized (EP) L-Alanine (ALN) modified carbon nanotube paste electrode (EP(ALN)MCNTPE). The electrochemical, structural, resistive, and conductive properties of both the EP(ALN)MCNTPE and bare carbon nanotube paste electrode (BCNTPE) surfaces were studied by cyclic voltammetry (CV), Differential pulse voltammetry (DPV), scanning electron microscopy (SEM) and electrochemical impedance Spectroscopy (EIS) techniques. The EP(ALN) presented electrode surface exhibits significantly enhanced peak currents compared to BCNTPE. The optimizing experimental parameters, including PBS in pH, scan rate and concentration variation, also constructed to achieving high selectivity and sensitivity for the analysis of HDQ. The oxidation and reduction peak currents of HDQ exhibited improvement with increasing concentrations ranging from 0.2 µM to 4.0 µM. The achieved lower limit of detection (LOD) and lower limit of quantification (LOQ) were 0.174 µM and 0.582 µM, alone and it shows good analytical responses. The EP(ALN)MCNTPE shows good stability, reproducibility, and repeatability for HDQ. The electrochemically developed sensor proved applicable for both quantitative and qualitative analysis of HDQ in a cosmetic sample.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 14","pages":"8019 - 8030"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous electrochemical detection of hydroquinone and catechol using a carbon nanotube paste electrode modified with electrochemically polymerized L-alanine\",\"authors\":\"Manoj Koorgalli Manju, Jamballi G. Manjunatha, Kanathappa Bhimaraya, Samar A. Aldossari, Saikh Mohammad, Mika Sillanpää\",\"doi\":\"10.1007/s11696-024-03652-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An electrochemical analysis of Hydroquinone (HDQ) and Catechol (CTL) was analyzing in a 0.2 M phosphate buffer solution (PBS) using a modest constructing electrochemically polymerized (EP) L-Alanine (ALN) modified carbon nanotube paste electrode (EP(ALN)MCNTPE). The electrochemical, structural, resistive, and conductive properties of both the EP(ALN)MCNTPE and bare carbon nanotube paste electrode (BCNTPE) surfaces were studied by cyclic voltammetry (CV), Differential pulse voltammetry (DPV), scanning electron microscopy (SEM) and electrochemical impedance Spectroscopy (EIS) techniques. The EP(ALN) presented electrode surface exhibits significantly enhanced peak currents compared to BCNTPE. The optimizing experimental parameters, including PBS in pH, scan rate and concentration variation, also constructed to achieving high selectivity and sensitivity for the analysis of HDQ. The oxidation and reduction peak currents of HDQ exhibited improvement with increasing concentrations ranging from 0.2 µM to 4.0 µM. The achieved lower limit of detection (LOD) and lower limit of quantification (LOQ) were 0.174 µM and 0.582 µM, alone and it shows good analytical responses. The EP(ALN)MCNTPE shows good stability, reproducibility, and repeatability for HDQ. The electrochemically developed sensor proved applicable for both quantitative and qualitative analysis of HDQ in a cosmetic sample.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"78 14\",\"pages\":\"8019 - 8030\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03652-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03652-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Simultaneous electrochemical detection of hydroquinone and catechol using a carbon nanotube paste electrode modified with electrochemically polymerized L-alanine
An electrochemical analysis of Hydroquinone (HDQ) and Catechol (CTL) was analyzing in a 0.2 M phosphate buffer solution (PBS) using a modest constructing electrochemically polymerized (EP) L-Alanine (ALN) modified carbon nanotube paste electrode (EP(ALN)MCNTPE). The electrochemical, structural, resistive, and conductive properties of both the EP(ALN)MCNTPE and bare carbon nanotube paste electrode (BCNTPE) surfaces were studied by cyclic voltammetry (CV), Differential pulse voltammetry (DPV), scanning electron microscopy (SEM) and electrochemical impedance Spectroscopy (EIS) techniques. The EP(ALN) presented electrode surface exhibits significantly enhanced peak currents compared to BCNTPE. The optimizing experimental parameters, including PBS in pH, scan rate and concentration variation, also constructed to achieving high selectivity and sensitivity for the analysis of HDQ. The oxidation and reduction peak currents of HDQ exhibited improvement with increasing concentrations ranging from 0.2 µM to 4.0 µM. The achieved lower limit of detection (LOD) and lower limit of quantification (LOQ) were 0.174 µM and 0.582 µM, alone and it shows good analytical responses. The EP(ALN)MCNTPE shows good stability, reproducibility, and repeatability for HDQ. The electrochemically developed sensor proved applicable for both quantitative and qualitative analysis of HDQ in a cosmetic sample.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.