Sunil Kumar Sunani, Prasanna S. Koti, N. C. Sunitha, Manoj Choudhary, B. Jeevan, C. Anilkumar, S. Raghu, Basana Gowda Gadratagi, Manas Kumar Bag, Licon Kumar Acharya, Dama Ram, Bishnu Maya Bashyal, Shyamaranjan Das Mohapatra
{"title":"水稻新病原体 Ustilaginoidea virens:病原体毒力策略与宿主防御之间的动态相互作用","authors":"Sunil Kumar Sunani, Prasanna S. Koti, N. C. Sunitha, Manoj Choudhary, B. Jeevan, C. Anilkumar, S. Raghu, Basana Gowda Gadratagi, Manas Kumar Bag, Licon Kumar Acharya, Dama Ram, Bishnu Maya Bashyal, Shyamaranjan Das Mohapatra","doi":"10.1007/s00425-024-04523-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main Conclusion</h3><p>The <i>Ustilaginoidea virens</i> –rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between <i>U. virens</i> and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Rice False Smut (RFS) caused by the fungus <i>Ustilaginoidea virens</i> currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. <i>U. virens</i> can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of <i>U. virens</i>, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in <i>U. virens</i>–rice pathosystem research while identifying opportunities for future investigations.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense\",\"authors\":\"Sunil Kumar Sunani, Prasanna S. Koti, N. C. Sunitha, Manoj Choudhary, B. Jeevan, C. Anilkumar, S. Raghu, Basana Gowda Gadratagi, Manas Kumar Bag, Licon Kumar Acharya, Dama Ram, Bishnu Maya Bashyal, Shyamaranjan Das Mohapatra\",\"doi\":\"10.1007/s00425-024-04523-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Main Conclusion</h3><p>The <i>Ustilaginoidea virens</i> –rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between <i>U. virens</i> and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding.</p><h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The Rice False Smut (RFS) caused by the fungus <i>Ustilaginoidea virens</i> currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. <i>U. virens</i> can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of <i>U. virens</i>, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in <i>U. virens</i>–rice pathosystem research while identifying opportunities for future investigations.</p>\",\"PeriodicalId\":20177,\"journal\":{\"name\":\"Planta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00425-024-04523-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04523-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense
Main Conclusion
The Ustilaginoidea virens –rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding.
Abstract
The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens–rice pathosystem research while identifying opportunities for future investigations.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.