Chhavi Sharma, Sara E. C. Dale, Klaus Mathwig, Marcel A. G. Zevenbergen, Zhongkai Li, Bhuvanesh E., Kaushik Parida, Yuvraj Singh Negi, Frank Marken
{"title":"在高盐介质中使用磺化聚(氧-1,4-亚苯基-氧-1,4-亚苯基羰基-1,4-亚苯基)实现离子二极管电流整流","authors":"Chhavi Sharma, Sara E. C. Dale, Klaus Mathwig, Marcel A. G. Zevenbergen, Zhongkai Li, Bhuvanesh E., Kaushik Parida, Yuvraj Singh Negi, Frank Marken","doi":"10.1002/celc.202400411","DOIUrl":null,"url":null,"abstract":"<p>Sulfonated poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,4-phenylene) also known as SPEEK is a chemically robust cation conductor with good solution processability. A thin film (approx. 0.7 μm) coated asymmetrically over a 10 μm diameter microhole in a Teflon substrate film (5 μm thickness) produces ionic diode effects in aqueous electrolyte media even at high ionic strengths up to 2 M NaCl. The enhancement in the ionic diode performance under high salt conditions is tentatively attributed to a (partial) switch from a concentration polarisation effect (dominant for high diode currents) to interfacial polarisation (dominant at low current; proposed for molecularly rigid ionomers). Ionic strength effects on the diode performance seem relatively low further indicative of a mechanism for the diode effect caused by interfacial polarisation without significant concentration polarisation. Preliminary comparison of diode phenomena in aqueous HCl, LiCl, NaCl, and MgCl<sub>2</sub> reveals cation specific effects due to interaction with the polymer.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400411","citationCount":"0","resultStr":"{\"title\":\"Ionic Diode Current Rectification in High Salt Media with Sulfonated Poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,4-phenylene)\",\"authors\":\"Chhavi Sharma, Sara E. C. Dale, Klaus Mathwig, Marcel A. G. Zevenbergen, Zhongkai Li, Bhuvanesh E., Kaushik Parida, Yuvraj Singh Negi, Frank Marken\",\"doi\":\"10.1002/celc.202400411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sulfonated poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,4-phenylene) also known as SPEEK is a chemically robust cation conductor with good solution processability. A thin film (approx. 0.7 μm) coated asymmetrically over a 10 μm diameter microhole in a Teflon substrate film (5 μm thickness) produces ionic diode effects in aqueous electrolyte media even at high ionic strengths up to 2 M NaCl. The enhancement in the ionic diode performance under high salt conditions is tentatively attributed to a (partial) switch from a concentration polarisation effect (dominant for high diode currents) to interfacial polarisation (dominant at low current; proposed for molecularly rigid ionomers). Ionic strength effects on the diode performance seem relatively low further indicative of a mechanism for the diode effect caused by interfacial polarisation without significant concentration polarisation. Preliminary comparison of diode phenomena in aqueous HCl, LiCl, NaCl, and MgCl<sub>2</sub> reveals cation specific effects due to interaction with the polymer.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400411\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400411\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400411","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Ionic Diode Current Rectification in High Salt Media with Sulfonated Poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,4-phenylene)
Sulfonated poly(oxy-1,4-phenylene-oxy-1,4-phenylenecarbonyl-1,4-phenylene) also known as SPEEK is a chemically robust cation conductor with good solution processability. A thin film (approx. 0.7 μm) coated asymmetrically over a 10 μm diameter microhole in a Teflon substrate film (5 μm thickness) produces ionic diode effects in aqueous electrolyte media even at high ionic strengths up to 2 M NaCl. The enhancement in the ionic diode performance under high salt conditions is tentatively attributed to a (partial) switch from a concentration polarisation effect (dominant for high diode currents) to interfacial polarisation (dominant at low current; proposed for molecularly rigid ionomers). Ionic strength effects on the diode performance seem relatively low further indicative of a mechanism for the diode effect caused by interfacial polarisation without significant concentration polarisation. Preliminary comparison of diode phenomena in aqueous HCl, LiCl, NaCl, and MgCl2 reveals cation specific effects due to interaction with the polymer.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.