利用基于有机晶体管的酶传感器检测人体汗液中的微摩尔葡萄糖水平

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Dr. Daijiro Haba, Prof. Dr. Gojiro Nakagami, Prof. Dr. Tsuyoshi Minami
{"title":"利用基于有机晶体管的酶传感器检测人体汗液中的微摩尔葡萄糖水平","authors":"Dr. Yui Sasaki,&nbsp;Kohei Ohshiro,&nbsp;Miyuki Kato,&nbsp;Dr. Daijiro Haba,&nbsp;Prof. Dr. Gojiro Nakagami,&nbsp;Prof. Dr. Tsuyoshi Minami","doi":"10.1002/celc.202400292","DOIUrl":null,"url":null,"abstract":"<p>Sweat glucose serves as a significant biomarker of health, necessitating accurate determination at the micromolar level for noninvasive monitoring. To address this need, we design an organic field-effect transistor (OFET)-based enzymatic sensor to quantify glucose levels in human sweat. The extended-gate structure of the OFET device ensures stable analyte detection in human sweat owing to its isolated configuration. The extended-gate-type OFET has been functionalized with glucose oxidase and an <i>N</i>-ethylphenazonium-based mediator-attached monolayer. This configuration facilitates electron relay, enabling accurate and reproducible glucose detection. Leveraging the amplification ability of the OFET, the enzymatic sensor exhibited highly sensitive glucose detection, achieving a low limit of detection (2.9 μM) suitable for sweat analysis requirements. In addition, the sensor exhibited high discriminability in detecting glucose amidst interferents commonly found in sweat, indicating its practical feasibility for sweat analysis. Validation of glucose recovery rates (95–105 %) in human sweat, without pretreatment, was performed using established instrumental analysis methods.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400292","citationCount":"0","resultStr":"{\"title\":\"Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor\",\"authors\":\"Dr. Yui Sasaki,&nbsp;Kohei Ohshiro,&nbsp;Miyuki Kato,&nbsp;Dr. Daijiro Haba,&nbsp;Prof. Dr. Gojiro Nakagami,&nbsp;Prof. Dr. Tsuyoshi Minami\",\"doi\":\"10.1002/celc.202400292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sweat glucose serves as a significant biomarker of health, necessitating accurate determination at the micromolar level for noninvasive monitoring. To address this need, we design an organic field-effect transistor (OFET)-based enzymatic sensor to quantify glucose levels in human sweat. The extended-gate structure of the OFET device ensures stable analyte detection in human sweat owing to its isolated configuration. The extended-gate-type OFET has been functionalized with glucose oxidase and an <i>N</i>-ethylphenazonium-based mediator-attached monolayer. This configuration facilitates electron relay, enabling accurate and reproducible glucose detection. Leveraging the amplification ability of the OFET, the enzymatic sensor exhibited highly sensitive glucose detection, achieving a low limit of detection (2.9 μM) suitable for sweat analysis requirements. In addition, the sensor exhibited high discriminability in detecting glucose amidst interferents commonly found in sweat, indicating its practical feasibility for sweat analysis. Validation of glucose recovery rates (95–105 %) in human sweat, without pretreatment, was performed using established instrumental analysis methods.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400292\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400292\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400292","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

汗液葡萄糖是一种重要的健康生物标志物,需要在微摩尔水平上进行精确测定,以便进行无创监测。为了满足这一需求,我们设计了一种基于有机场效应晶体管(OFET)的酶传感器来量化人体汗液中的葡萄糖水平。由于其隔离配置,OFET 器件的扩展栅结构可确保在人体汗液中进行稳定的分析检测。这种扩展栅极型 OFET 已被葡萄糖氧化酶和 N-ethylphenazonium 介质附着单层功能化。这种结构有利于电子中继,从而实现准确、可重复的葡萄糖检测。利用 OFET 的放大能力,酶传感器实现了高灵敏度的葡萄糖检测,达到了适合汗液分析要求的低检测限(2.9 μM)。此外,该传感器在检测汗液中常见的干扰物时表现出很高的鉴别能力,这表明其在汗液分析中的实用可行性。在未进行预处理的情况下,利用现有的仪器分析方法对人体汗液中的葡萄糖回收率(95-105%)进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor

Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor

Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor

Sweat glucose serves as a significant biomarker of health, necessitating accurate determination at the micromolar level for noninvasive monitoring. To address this need, we design an organic field-effect transistor (OFET)-based enzymatic sensor to quantify glucose levels in human sweat. The extended-gate structure of the OFET device ensures stable analyte detection in human sweat owing to its isolated configuration. The extended-gate-type OFET has been functionalized with glucose oxidase and an N-ethylphenazonium-based mediator-attached monolayer. This configuration facilitates electron relay, enabling accurate and reproducible glucose detection. Leveraging the amplification ability of the OFET, the enzymatic sensor exhibited highly sensitive glucose detection, achieving a low limit of detection (2.9 μM) suitable for sweat analysis requirements. In addition, the sensor exhibited high discriminability in detecting glucose amidst interferents commonly found in sweat, indicating its practical feasibility for sweat analysis. Validation of glucose recovery rates (95–105 %) in human sweat, without pretreatment, was performed using established instrumental analysis methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信