Frenkel-Kontorova 型原子链的能量分布:从保守动力学到耗散动力学的过渡

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ozgur Afsar , Ugur Tirnakli
{"title":"Frenkel-Kontorova 型原子链的能量分布:从保守动力学到耗散动力学的过渡","authors":"Ozgur Afsar ,&nbsp;Ugur Tirnakli","doi":"10.1016/j.physd.2024.134375","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate energy distributions of Frenkel–Kontorova-type atomic chains generated from large number of independent identically distributed (<em>iid</em>) random initial atomic positionings under two cases. In the first case, atoms at the free-end chains without dissipation (conservative case) are only coupled to one other atom, whereas each atom inside the bulk is coupled to its 2 nearest neighbours. Here, atoms located at the chain are all at the same type. Such kind of systems can be modelled by conservative standard map. We show that, when the coupling is non-linear (which leads chaotic arrangement of the atoms) for energy distribution, the Boltzmann–Gibbs statistical mechanics is constructed, namely, exponential form emerges as Boltzmann factor <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>∝</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>β</mi><mi>E</mi></mrow></msup></mrow></math></span>. However, when the coupling is linear (which leads linear arrangement of the atoms) the Boltzmann–Gibbs statistical mechanics fails and the exponential distribution is replaced by a <span><math><mi>q</mi></math></span>-exponential form, which generalizes the Boltzmann factor as <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>∝</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>E</mi></mrow></msubsup><mo>=</mo><msup><mrow><mrow><mo>[</mo><mn>1</mn><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>E</mi><mo>]</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span>. We also show for each type of atom localization with <span><math><mi>N</mi></math></span> number of atoms, <span><math><mi>β</mi></math></span> (or <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>) values can be given as a function of <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>. In the second case, although the couplings among the atoms are exactly the same as the previous case, atoms located at the chain are now considered as being at different types. We show that, for energy distribution of such linear chains, each of the distributions corresponding to different dissipation parameters (<span><math><mi>γ</mi></math></span>) are in the <span><math><mi>q</mi></math></span>-exponential form. Moreover, we numerically verify that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> values can be given as a linear function of <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>. On the other hand, although energy distributions of the chaotic chains for different dissipation parameters are in exponential form, a linear scaling between <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> values cannot be obtained. This scaling is possible if the energies of the chains are scaled with <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>N</mi></mrow></msup></mrow></math></span>. For both cases, clear data collapses among distributions are evident.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy distributions of Frenkel–Kontorova-type atomic chains: Transition from conservative to dissipative dynamics\",\"authors\":\"Ozgur Afsar ,&nbsp;Ugur Tirnakli\",\"doi\":\"10.1016/j.physd.2024.134375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate energy distributions of Frenkel–Kontorova-type atomic chains generated from large number of independent identically distributed (<em>iid</em>) random initial atomic positionings under two cases. In the first case, atoms at the free-end chains without dissipation (conservative case) are only coupled to one other atom, whereas each atom inside the bulk is coupled to its 2 nearest neighbours. Here, atoms located at the chain are all at the same type. Such kind of systems can be modelled by conservative standard map. We show that, when the coupling is non-linear (which leads chaotic arrangement of the atoms) for energy distribution, the Boltzmann–Gibbs statistical mechanics is constructed, namely, exponential form emerges as Boltzmann factor <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>∝</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>β</mi><mi>E</mi></mrow></msup></mrow></math></span>. However, when the coupling is linear (which leads linear arrangement of the atoms) the Boltzmann–Gibbs statistical mechanics fails and the exponential distribution is replaced by a <span><math><mi>q</mi></math></span>-exponential form, which generalizes the Boltzmann factor as <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo>∝</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>E</mi></mrow></msubsup><mo>=</mo><msup><mrow><mrow><mo>[</mo><mn>1</mn><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>E</mi><mo>]</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span>. We also show for each type of atom localization with <span><math><mi>N</mi></math></span> number of atoms, <span><math><mi>β</mi></math></span> (or <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>) values can be given as a function of <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>. In the second case, although the couplings among the atoms are exactly the same as the previous case, atoms located at the chain are now considered as being at different types. We show that, for energy distribution of such linear chains, each of the distributions corresponding to different dissipation parameters (<span><math><mi>γ</mi></math></span>) are in the <span><math><mi>q</mi></math></span>-exponential form. Moreover, we numerically verify that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> values can be given as a linear function of <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>. On the other hand, although energy distributions of the chaotic chains for different dissipation parameters are in exponential form, a linear scaling between <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> values cannot be obtained. This scaling is possible if the energies of the chains are scaled with <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>N</mi></mrow></msup></mrow></math></span>. For both cases, clear data collapses among distributions are evident.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由大量独立同分布()随机初始原子位置产生的弗伦克尔-康托洛娃型原子链在两种情况下的能量分布。在第一种情况下,自由端原子链上的原子在没有耗散的情况下(保守情况)只与另一个原子耦合,而散体内部的每个原子与其两个近邻原子耦合。在这种情况下,位于链上的原子都属于同一类型。这种系统可以用保守标准图来模拟。我们的研究表明,当能量分布的耦合是非线性的(导致原子的混乱排列)时,可以构建玻尔兹曼-吉布斯统计力学,即以指数形式出现玻尔兹曼因子。然而,当耦合为线性(导致原子线性排列)时,玻尔兹曼-吉布斯统计力学失效,指数分布被-指数形式取代,将玻尔兹曼因子概括为 。我们还表明,对于每种原子定位类型,原子个数(或 )值都可以作为 . 的函数给出。 在第二种情况下,虽然原子间的耦合与前一种情况完全相同,但位于链上的原子现在被视为不同类型的原子。我们证明,对于这种线性链的能量分布,不同耗散参数()所对应的分布均为-指数形式。此外,我们从数值上验证了数值可以作为 ...的线性函数给出。 另一方面,虽然不同耗散参数的混沌链的能量分布呈指数形式,但无法获得和数值之间的线性比例。如果混沌链的能量与 .在这两种情况下,各分布之间都存在明显的数据坍缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy distributions of Frenkel–Kontorova-type atomic chains: Transition from conservative to dissipative dynamics

We investigate energy distributions of Frenkel–Kontorova-type atomic chains generated from large number of independent identically distributed (iid) random initial atomic positionings under two cases. In the first case, atoms at the free-end chains without dissipation (conservative case) are only coupled to one other atom, whereas each atom inside the bulk is coupled to its 2 nearest neighbours. Here, atoms located at the chain are all at the same type. Such kind of systems can be modelled by conservative standard map. We show that, when the coupling is non-linear (which leads chaotic arrangement of the atoms) for energy distribution, the Boltzmann–Gibbs statistical mechanics is constructed, namely, exponential form emerges as Boltzmann factor P(E)eβE. However, when the coupling is linear (which leads linear arrangement of the atoms) the Boltzmann–Gibbs statistical mechanics fails and the exponential distribution is replaced by a q-exponential form, which generalizes the Boltzmann factor as P(E)eqβqE=[1(1q)βqE]1/(1q). We also show for each type of atom localization with N number of atoms, β (or βq) values can be given as a function of 1/N. In the second case, although the couplings among the atoms are exactly the same as the previous case, atoms located at the chain are now considered as being at different types. We show that, for energy distribution of such linear chains, each of the distributions corresponding to different dissipation parameters (γ) are in the q-exponential form. Moreover, we numerically verify that βq values can be given as a linear function of 1/n=1N(1γ)(n2). On the other hand, although energy distributions of the chaotic chains for different dissipation parameters are in exponential form, a linear scaling between β and γ values cannot be obtained. This scaling is possible if the energies of the chains are scaled with 1/(1γ)N. For both cases, clear data collapses among distributions are evident.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信