实现独立式混合超级电容器电极从镍泡沫到硫化镍泡沫的完全转换

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Xuerui Yi, Caroline Kirk, Neil Robertson
{"title":"实现独立式混合超级电容器电极从镍泡沫到硫化镍泡沫的完全转换","authors":"Xuerui Yi,&nbsp;Caroline Kirk,&nbsp;Neil Robertson","doi":"10.1002/celc.202400383","DOIUrl":null,"url":null,"abstract":"<p>We present a unique, one-step, hydrothermal process to prepare nickel sulfide (Ni<sub>3</sub>S<sub>2</sub>) foam by a simple and direct conversion from nickel foam, which contributes both as a scaffold for the reaction and as reactant. The Ni<sub>3</sub>S<sub>2</sub> foam exhibits remarkable mechanical stability, retaining the structural integrity of the foam and excellent crystallinity even after ultrasonication at 200 W for 30 mins. We document the transformation of the nickel foam template into a Ni<sub>3</sub>S<sub>2</sub> foam, highlighting the role of synthesis duration on the phase evolution and unique morphology of Ni<sub>3</sub>S<sub>2</sub>. PXRD and SEM analyses reveal a complete transformation after 24 hours from the nickel foam to a pure Ni<sub>3</sub>S<sub>2</sub> foam, which has a highly porous and interconnected ultra-thin nanosheet architecture. This significantly enhances the surface area and provides many electrochemical reaction sites. In a three-electrode cell, the capacity of the Ni<sub>3</sub>S<sub>2</sub> foam electrode is 3.9 C cm<sup>−2</sup> at 8 mA cm<sup>−2</sup>, which is higher than previous reports for Ni<sub>3</sub>S<sub>2</sub>. In a hybrid supercapacitor device, the Ni<sub>3</sub>S<sub>2</sub> foam demonstrates significant increase in capacitance through 500 cycles and the capacitance plateaus after 2000 cycles. Even after 8500 continued charge-discharge cycles, the device exhibits excellent cycle stability indicating improvement with age.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400383","citationCount":"0","resultStr":"{\"title\":\"Achieving Complete Conversion from Nickel Foam to Nickel Sulfide Foam for a Freestanding Hybrid-Supercapacitor Electrode\",\"authors\":\"Xuerui Yi,&nbsp;Caroline Kirk,&nbsp;Neil Robertson\",\"doi\":\"10.1002/celc.202400383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a unique, one-step, hydrothermal process to prepare nickel sulfide (Ni<sub>3</sub>S<sub>2</sub>) foam by a simple and direct conversion from nickel foam, which contributes both as a scaffold for the reaction and as reactant. The Ni<sub>3</sub>S<sub>2</sub> foam exhibits remarkable mechanical stability, retaining the structural integrity of the foam and excellent crystallinity even after ultrasonication at 200 W for 30 mins. We document the transformation of the nickel foam template into a Ni<sub>3</sub>S<sub>2</sub> foam, highlighting the role of synthesis duration on the phase evolution and unique morphology of Ni<sub>3</sub>S<sub>2</sub>. PXRD and SEM analyses reveal a complete transformation after 24 hours from the nickel foam to a pure Ni<sub>3</sub>S<sub>2</sub> foam, which has a highly porous and interconnected ultra-thin nanosheet architecture. This significantly enhances the surface area and provides many electrochemical reaction sites. In a three-electrode cell, the capacity of the Ni<sub>3</sub>S<sub>2</sub> foam electrode is 3.9 C cm<sup>−2</sup> at 8 mA cm<sup>−2</sup>, which is higher than previous reports for Ni<sub>3</sub>S<sub>2</sub>. In a hybrid supercapacitor device, the Ni<sub>3</sub>S<sub>2</sub> foam demonstrates significant increase in capacitance through 500 cycles and the capacitance plateaus after 2000 cycles. Even after 8500 continued charge-discharge cycles, the device exhibits excellent cycle stability indicating improvement with age.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400383\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400383\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400383","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

泡沫镍既是反应的支架,也是反应物,我们提出了一种独特的一步水热法工艺,通过简单直接地从泡沫镍转化制备泡沫硫化镍(Ni3S2)。Ni3S2 泡沫具有显著的机械稳定性,即使在 200 瓦的功率下超声 30 分钟,仍能保持泡沫结构的完整性和优异的结晶性。我们记录了镍泡沫模板向 Ni3S2 泡沫的转化过程,强调了合成持续时间对 Ni3S2 的相演化和独特形态的影响。PXRD 和 SEM 分析表明,镍泡沫在 24 小时后完全转变为纯 Ni3S2 泡沫,这种泡沫具有高度多孔和相互连接的超薄纳米片结构。这大大增加了表面积,并提供了许多电化学反应位点。在三电极电池中,当电流为 8 mA cm-2 时,Ni3S2 泡沫电极的容量为 3.9 C cm-2,高于之前有关 Ni3S2 的报道。在混合超级电容器装置中,Ni3S2 泡沫的电容在循环 500 次后显著增加,在循环 2000 次后电容趋于稳定。即使在持续充放电循环 8500 次之后,该装置仍表现出极佳的循环稳定性,表明其电容随着使用时间的延长而得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving Complete Conversion from Nickel Foam to Nickel Sulfide Foam for a Freestanding Hybrid-Supercapacitor Electrode

Achieving Complete Conversion from Nickel Foam to Nickel Sulfide Foam for a Freestanding Hybrid-Supercapacitor Electrode

Achieving Complete Conversion from Nickel Foam to Nickel Sulfide Foam for a Freestanding Hybrid-Supercapacitor Electrode

We present a unique, one-step, hydrothermal process to prepare nickel sulfide (Ni3S2) foam by a simple and direct conversion from nickel foam, which contributes both as a scaffold for the reaction and as reactant. The Ni3S2 foam exhibits remarkable mechanical stability, retaining the structural integrity of the foam and excellent crystallinity even after ultrasonication at 200 W for 30 mins. We document the transformation of the nickel foam template into a Ni3S2 foam, highlighting the role of synthesis duration on the phase evolution and unique morphology of Ni3S2. PXRD and SEM analyses reveal a complete transformation after 24 hours from the nickel foam to a pure Ni3S2 foam, which has a highly porous and interconnected ultra-thin nanosheet architecture. This significantly enhances the surface area and provides many electrochemical reaction sites. In a three-electrode cell, the capacity of the Ni3S2 foam electrode is 3.9 C cm−2 at 8 mA cm−2, which is higher than previous reports for Ni3S2. In a hybrid supercapacitor device, the Ni3S2 foam demonstrates significant increase in capacitance through 500 cycles and the capacitance plateaus after 2000 cycles. Even after 8500 continued charge-discharge cycles, the device exhibits excellent cycle stability indicating improvement with age.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信