使用基于代理的模型预测生成式人工智能的影响

Joao Tiago Aparicio, Manuela Aparicio, Sofia Aparicio, Carlos J. Costa
{"title":"使用基于代理的模型预测生成式人工智能的影响","authors":"Joao Tiago Aparicio, Manuela Aparicio, Sofia Aparicio, Carlos J. Costa","doi":"arxiv-2408.17268","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (AI) systems have transformed various\nindustries by autonomously generating content that mimics human creativity.\nHowever, concerns about their social and economic consequences arise with\nwidespread adoption. This paper employs agent-based modeling (ABM) to explore\nthese implications, predicting the impact of generative AI on societal\nframeworks. The ABM integrates individual, business, and governmental agents to\nsimulate dynamics such as education, skills acquisition, AI adoption, and\nregulatory responses. This study enhances understanding of AI's complex\ninteractions and provides insights for policymaking. The literature review\nunderscores ABM's effectiveness in forecasting AI impacts, revealing AI\nadoption, employment, and regulation trends with potential policy implications.\nFuture research will refine the model, assess long-term implications and\nethical considerations, and deepen understanding of generative AI's societal\neffects.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Impact of Generative AI Using an Agent-Based Model\",\"authors\":\"Joao Tiago Aparicio, Manuela Aparicio, Sofia Aparicio, Carlos J. Costa\",\"doi\":\"arxiv-2408.17268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative artificial intelligence (AI) systems have transformed various\\nindustries by autonomously generating content that mimics human creativity.\\nHowever, concerns about their social and economic consequences arise with\\nwidespread adoption. This paper employs agent-based modeling (ABM) to explore\\nthese implications, predicting the impact of generative AI on societal\\nframeworks. The ABM integrates individual, business, and governmental agents to\\nsimulate dynamics such as education, skills acquisition, AI adoption, and\\nregulatory responses. This study enhances understanding of AI's complex\\ninteractions and provides insights for policymaking. The literature review\\nunderscores ABM's effectiveness in forecasting AI impacts, revealing AI\\nadoption, employment, and regulation trends with potential policy implications.\\nFuture research will refine the model, assess long-term implications and\\nethical considerations, and deepen understanding of generative AI's societal\\neffects.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(AI)系统通过自主生成模仿人类创造力的内容,改变了各行各业。本文采用基于代理的建模(ABM)来探讨这些影响,预测生成式人工智能对社会框架的影响。该模型整合了个人、企业和政府代理,以模拟教育、技能获取、人工智能应用和监管响应等动态。这项研究加深了人们对人工智能复杂互动关系的理解,并为政策制定提供了真知灼见。未来的研究将完善模型,评估长期影响和伦理考虑,并加深对人工智能社会效应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Impact of Generative AI Using an Agent-Based Model
Generative artificial intelligence (AI) systems have transformed various industries by autonomously generating content that mimics human creativity. However, concerns about their social and economic consequences arise with widespread adoption. This paper employs agent-based modeling (ABM) to explore these implications, predicting the impact of generative AI on societal frameworks. The ABM integrates individual, business, and governmental agents to simulate dynamics such as education, skills acquisition, AI adoption, and regulatory responses. This study enhances understanding of AI's complex interactions and provides insights for policymaking. The literature review underscores ABM's effectiveness in forecasting AI impacts, revealing AI adoption, employment, and regulation trends with potential policy implications. Future research will refine the model, assess long-term implications and ethical considerations, and deepen understanding of generative AI's societal effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信