Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla
{"title":"资源有限环境中的地理信息系统","authors":"Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla","doi":"arxiv-2408.17361","DOIUrl":null,"url":null,"abstract":"This paper describes spatially aware Artificial Intelligence, GeoAI, tailored\nfor small organizations such as NGOs in resource constrained contexts where\naccess to large datasets, expensive compute infrastructure and AI expertise may\nbe restricted. We furthermore consider future scenarios in which\nresource-intensive, large geospatial models may homogenize the representation\nof complex landscapes, and suggest strategies to prepare for this condition.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeoAI in resource-constrained environments\",\"authors\":\"Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla\",\"doi\":\"arxiv-2408.17361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes spatially aware Artificial Intelligence, GeoAI, tailored\\nfor small organizations such as NGOs in resource constrained contexts where\\naccess to large datasets, expensive compute infrastructure and AI expertise may\\nbe restricted. We furthermore consider future scenarios in which\\nresource-intensive, large geospatial models may homogenize the representation\\nof complex landscapes, and suggest strategies to prepare for this condition.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes spatially aware Artificial Intelligence, GeoAI, tailored
for small organizations such as NGOs in resource constrained contexts where
access to large datasets, expensive compute infrastructure and AI expertise may
be restricted. We furthermore consider future scenarios in which
resource-intensive, large geospatial models may homogenize the representation
of complex landscapes, and suggest strategies to prepare for this condition.