资源有限环境中的地理信息系统

Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla
{"title":"资源有限环境中的地理信息系统","authors":"Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla","doi":"arxiv-2408.17361","DOIUrl":null,"url":null,"abstract":"This paper describes spatially aware Artificial Intelligence, GeoAI, tailored\nfor small organizations such as NGOs in resource constrained contexts where\naccess to large datasets, expensive compute infrastructure and AI expertise may\nbe restricted. We furthermore consider future scenarios in which\nresource-intensive, large geospatial models may homogenize the representation\nof complex landscapes, and suggest strategies to prepare for this condition.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeoAI in resource-constrained environments\",\"authors\":\"Marc Böhlen, Gede Sughiarta, Atiek Kurnianingsih, Srikar Reddy Gopaladinne, Sujay Shrivastava, Hemanth Kumar Reddy Gorla\",\"doi\":\"arxiv-2408.17361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes spatially aware Artificial Intelligence, GeoAI, tailored\\nfor small organizations such as NGOs in resource constrained contexts where\\naccess to large datasets, expensive compute infrastructure and AI expertise may\\nbe restricted. We furthermore consider future scenarios in which\\nresource-intensive, large geospatial models may homogenize the representation\\nof complex landscapes, and suggest strategies to prepare for this condition.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了空间感知人工智能(GeoAI),它是为非政府组织等小型组织量身定制的,这些组织在资源有限的情况下可能难以获得大型数据集、昂贵的计算基础设施和人工智能专业知识。此外,我们还考虑了资源密集型大型地理空间模型可能会使复杂地貌的表达同质化的未来情景,并提出了应对这种情况的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GeoAI in resource-constrained environments
This paper describes spatially aware Artificial Intelligence, GeoAI, tailored for small organizations such as NGOs in resource constrained contexts where access to large datasets, expensive compute infrastructure and AI expertise may be restricted. We furthermore consider future scenarios in which resource-intensive, large geospatial models may homogenize the representation of complex landscapes, and suggest strategies to prepare for this condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信