{"title":"本科生高级实验室:探索分子光谱中的同位素偏移","authors":"Ye Fei, Yanpeng Ye, Qihang Zhang, Yuzhu Liu","doi":"10.1088/1361-6404/ad6cb2","DOIUrl":null,"url":null,"abstract":"Current university physics curricula and pedagogical research lack the study of molecular spectrum and its isotopic effects. In light of this, and considering the simplistic architecture of CN molecules alongside the significance of carbon isotopes in atmospheric cycles and various other disciplines, we have developed an advanced molecular spectroscopy experiment tailored for upper-level undergraduate physics educational courses. Utilizing <sup>12</sup>CO<sub>2</sub> and <sup>13</sup>CO<sub>2</sub> as experimental mediums, this study delves into the exploration of molecular energy level transitions and isotopic effects within molecular spectra through the analysis of CN molecular emission spectra. Additionally, simulations of CN molecular energy level transitions were conducted using LIFBASE software, thereby deepening students’ grasp of molecular energy level quantization. This experiment uses molecular spectrum to realize the interpretation of energy level structure and isotope effects, which is groundbreaking and will add experimental reference and expansion to the teaching of atomic physics.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced undergraduate laboratory: exploring isotopic shifts in molecular spectroscopy\",\"authors\":\"Ye Fei, Yanpeng Ye, Qihang Zhang, Yuzhu Liu\",\"doi\":\"10.1088/1361-6404/ad6cb2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current university physics curricula and pedagogical research lack the study of molecular spectrum and its isotopic effects. In light of this, and considering the simplistic architecture of CN molecules alongside the significance of carbon isotopes in atmospheric cycles and various other disciplines, we have developed an advanced molecular spectroscopy experiment tailored for upper-level undergraduate physics educational courses. Utilizing <sup>12</sup>CO<sub>2</sub> and <sup>13</sup>CO<sub>2</sub> as experimental mediums, this study delves into the exploration of molecular energy level transitions and isotopic effects within molecular spectra through the analysis of CN molecular emission spectra. Additionally, simulations of CN molecular energy level transitions were conducted using LIFBASE software, thereby deepening students’ grasp of molecular energy level quantization. This experiment uses molecular spectrum to realize the interpretation of energy level structure and isotope effects, which is groundbreaking and will add experimental reference and expansion to the teaching of atomic physics.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad6cb2\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad6cb2","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Advanced undergraduate laboratory: exploring isotopic shifts in molecular spectroscopy
Current university physics curricula and pedagogical research lack the study of molecular spectrum and its isotopic effects. In light of this, and considering the simplistic architecture of CN molecules alongside the significance of carbon isotopes in atmospheric cycles and various other disciplines, we have developed an advanced molecular spectroscopy experiment tailored for upper-level undergraduate physics educational courses. Utilizing 12CO2 and 13CO2 as experimental mediums, this study delves into the exploration of molecular energy level transitions and isotopic effects within molecular spectra through the analysis of CN molecular emission spectra. Additionally, simulations of CN molecular energy level transitions were conducted using LIFBASE software, thereby deepening students’ grasp of molecular energy level quantization. This experiment uses molecular spectrum to realize the interpretation of energy level structure and isotope effects, which is groundbreaking and will add experimental reference and expansion to the teaching of atomic physics.
期刊介绍:
European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education.
Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication.
To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following:
Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles.
Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks.
Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome.
Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates.
Descriptions of successful and original student projects, experimental, theoretical or computational.
Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers.
Reports of new developments in physics curricula and the techniques for teaching physics.
Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.