{"title":"用空间混合方法(HHO、HDG 和 WG)和时间跃迁方案离散化波浪方程的收敛性分析","authors":"Alexandre Ern, Morgane Steins","doi":"10.1007/s10915-024-02609-y","DOIUrl":null,"url":null,"abstract":"<p>We prove the optimal convergence in space and time for the linear acoustic wave equation in its second-order formulation in time, using the hybrid high-order method for space discretization and the leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin methods, but some novel ideas need to be introduced to handle the static coupling between cell and face unknowns. Because of the close ties between the methods, the present proof can be readily extended to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak Galerkin method.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis for the Wave Equation Discretized with Hybrid Methods in Space (HHO, HDG and WG) and the Leapfrog Scheme in Time\",\"authors\":\"Alexandre Ern, Morgane Steins\",\"doi\":\"10.1007/s10915-024-02609-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the optimal convergence in space and time for the linear acoustic wave equation in its second-order formulation in time, using the hybrid high-order method for space discretization and the leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin methods, but some novel ideas need to be introduced to handle the static coupling between cell and face unknowns. Because of the close ties between the methods, the present proof can be readily extended to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak Galerkin method.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02609-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02609-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Convergence Analysis for the Wave Equation Discretized with Hybrid Methods in Space (HHO, HDG and WG) and the Leapfrog Scheme in Time
We prove the optimal convergence in space and time for the linear acoustic wave equation in its second-order formulation in time, using the hybrid high-order method for space discretization and the leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin methods, but some novel ideas need to be introduced to handle the static coupling between cell and face unknowns. Because of the close ties between the methods, the present proof can be readily extended to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak Galerkin method.