用于 Kohn-Sham 类型能量最小化问题的黎曼牛顿方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. Altmann, D. Peterseim, T. Stykel
{"title":"用于 Kohn-Sham 类型能量最小化问题的黎曼牛顿方法","authors":"R. Altmann, D. Peterseim, T. Stykel","doi":"10.1007/s10915-024-02612-3","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemannian Newton Methods for Energy Minimization Problems of Kohn–Sham Type\",\"authors\":\"R. Altmann, D. Peterseim, T. Stykel\",\"doi\":\"10.1007/s10915-024-02612-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02612-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02612-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于计算物理和化学(如格罗斯-皮塔耶夫斯基模型和科恩-沙姆模型)中出现的约束能量最小化问题的数值求解。我们特别介绍了无穷维 Stiefel 流形和格拉斯曼流形上的黎曼牛顿方法。我们研究了这两个流形的几何形状及其对牛顿算法的影响,并提出了适合变分空间离散的无穷维情况下的黎曼哈希贤表达式。一系列数值实验说明了这些方法的性能,并证明了它们与其他成熟方案(如自洽场迭代和梯度下降方案)相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Riemannian Newton Methods for Energy Minimization Problems of Kohn–Sham Type

Riemannian Newton Methods for Energy Minimization Problems of Kohn–Sham Type

This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信