{"title":"基于多边形网格上 Navier-Stokes 方程速度-伪应力公式的弱 Galerkin 混合有限元法分析","authors":"Zeinab Gharibi, Mehdi Dehghan","doi":"10.1007/s10915-024-02651-w","DOIUrl":null,"url":null,"abstract":"<p>The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin mixed finite element method based on Banach spaces for the stationary Navier–Stokes equation in pseudostress–velocity formulation. Specifically, a modified pseudostress tensor, which depends on the pressure as well as the diffusive and convective terms, is introduced as an auxiliary unknown, and the incompressibility condition is then used to eliminate the pressure, which is subsequently computed using a postprocessing formula. Consequently, to discretize the resulting mixed formulation, it is sufficient to provide a tensorial weak Galerkin space for the pseudostress and a space of piecewise polynomial vectors of total degree at most ’k’ for the velocity. Moreover, the weak gradient/divergence operator is utilized to propose the weak discrete bilinear forms, whose continuous version involves the classical gradient/divergence operators. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babuška–Brezzi theory and the Banach–Nečas–Babuška theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method’s good performance and confirming the theoretical rates of convergence are presented.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Weak Galerkin Mixed Finite Element Method Based on the Velocity–Pseudostress Formulation for Navier–Stokes Equation on Polygonal Meshes\",\"authors\":\"Zeinab Gharibi, Mehdi Dehghan\",\"doi\":\"10.1007/s10915-024-02651-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin mixed finite element method based on Banach spaces for the stationary Navier–Stokes equation in pseudostress–velocity formulation. Specifically, a modified pseudostress tensor, which depends on the pressure as well as the diffusive and convective terms, is introduced as an auxiliary unknown, and the incompressibility condition is then used to eliminate the pressure, which is subsequently computed using a postprocessing formula. Consequently, to discretize the resulting mixed formulation, it is sufficient to provide a tensorial weak Galerkin space for the pseudostress and a space of piecewise polynomial vectors of total degree at most ’k’ for the velocity. Moreover, the weak gradient/divergence operator is utilized to propose the weak discrete bilinear forms, whose continuous version involves the classical gradient/divergence operators. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babuška–Brezzi theory and the Banach–Nečas–Babuška theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method’s good performance and confirming the theoretical rates of convergence are presented.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02651-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02651-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of Weak Galerkin Mixed Finite Element Method Based on the Velocity–Pseudostress Formulation for Navier–Stokes Equation on Polygonal Meshes
The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin mixed finite element method based on Banach spaces for the stationary Navier–Stokes equation in pseudostress–velocity formulation. Specifically, a modified pseudostress tensor, which depends on the pressure as well as the diffusive and convective terms, is introduced as an auxiliary unknown, and the incompressibility condition is then used to eliminate the pressure, which is subsequently computed using a postprocessing formula. Consequently, to discretize the resulting mixed formulation, it is sufficient to provide a tensorial weak Galerkin space for the pseudostress and a space of piecewise polynomial vectors of total degree at most ’k’ for the velocity. Moreover, the weak gradient/divergence operator is utilized to propose the weak discrete bilinear forms, whose continuous version involves the classical gradient/divergence operators. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babuška–Brezzi theory and the Banach–Nečas–Babuška theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method’s good performance and confirming the theoretical rates of convergence are presented.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.