解决理查兹方程的时空非连续伽勒金方法的误差估计和适应性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Vít Dolejší, Hyun-Geun Shin, Miloslav Vlasák
{"title":"解决理查兹方程的时空非连续伽勒金方法的误差估计和适应性","authors":"Vít Dolejší, Hyun-Geun Shin, Miloslav Vlasák","doi":"10.1007/s10915-024-02650-x","DOIUrl":null,"url":null,"abstract":"<p>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the <i>hp</i>-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation\",\"authors\":\"Vít Dolejší, Hyun-Geun Shin, Miloslav Vlasák\",\"doi\":\"10.1007/s10915-024-02650-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the <i>hp</i>-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02650-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02650-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种高阶时空自适应方法,用于描述流经可变饱和介质的流动运动的理查兹方程的数值求解。离散化基于时空非连续 Galerkin 方法,该方法具有高稳定性和高精度,并能自然处理变化网格。我们在基于残差的规范中推导出可靠、高效的后验误差估计。这些估计值使用了在局部时空元素或时空斑块上构建的平衡良好的时空通量重建。数值实验验证了估计的准确性。此外,我们还开发了 hp 自适应方法,并在一个实际案例中证明了该方法的效率和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation

Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation

We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the hp-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信