{"title":"用于具有不确定输入的 PDE 受限优化的多网格求解器","authors":"Gabriele Ciaramella, Fabio Nobile, Tommaso Vanzan","doi":"10.1007/s10915-024-02646-7","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective smoothers and collective two-level methods. The multigrid algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size is proportional to the number <i>N</i> of samples used to discretized the probability space. We show that this reduced system can be solved with optimal <i>O</i>(<i>N</i>) complexity. The multigrid method is tested both as a stationary method and as a preconditioner for GMRES on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and <span>\\(L^1\\)</span>-norm penalization on the control, in which the multigrid scheme is used as an inner solver within a semismooth Newton iteration; a risk-averse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multigrid Solver for PDE-Constrained Optimization with Uncertain Inputs\",\"authors\":\"Gabriele Ciaramella, Fabio Nobile, Tommaso Vanzan\",\"doi\":\"10.1007/s10915-024-02646-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective smoothers and collective two-level methods. The multigrid algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size is proportional to the number <i>N</i> of samples used to discretized the probability space. We show that this reduced system can be solved with optimal <i>O</i>(<i>N</i>) complexity. The multigrid method is tested both as a stationary method and as a preconditioner for GMRES on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and <span>\\\\(L^1\\\\)</span>-norm penalization on the control, in which the multigrid scheme is used as an inner solver within a semismooth Newton iteration; a risk-averse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02646-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02646-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Multigrid Solver for PDE-Constrained Optimization with Uncertain Inputs
In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective smoothers and collective two-level methods. The multigrid algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size is proportional to the number N of samples used to discretized the probability space. We show that this reduced system can be solved with optimal O(N) complexity. The multigrid method is tested both as a stationary method and as a preconditioner for GMRES on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and \(L^1\)-norm penalization on the control, in which the multigrid scheme is used as an inner solver within a semismooth Newton iteration; a risk-averse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.