有限体积元素法的灵活超收敛结构

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xiang Wang, Yuqing Zhang, Zhimin Zhang
{"title":"有限体积元素法的灵活超收敛结构","authors":"Xiang Wang, Yuqing Zhang, Zhimin Zhang","doi":"10.1007/s10915-024-02654-7","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel class of ultra-convergent structures for the Finite Volume Element (FVE) method. These structures are characterized by asymmetric and optional superconvergent points. We establish a crucial relationship between ultra-convergence properties and the orthogonality condition. Remarkably, within this framework, certain FVE schemes achieve simultaneous superconvergence of both derivatives and function values at designated points, as demonstrated in Example 2. This is a phenomenon rarely observed in other numerical methods. Theoretical validation of these findings is provided through the proposed Generalized M-Decomposition (GMD). Numerical experiments effectively substantiate our results.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Ultra-convergence Structures for the Finite Volume Element Method\",\"authors\":\"Xiang Wang, Yuqing Zhang, Zhimin Zhang\",\"doi\":\"10.1007/s10915-024-02654-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a novel class of ultra-convergent structures for the Finite Volume Element (FVE) method. These structures are characterized by asymmetric and optional superconvergent points. We establish a crucial relationship between ultra-convergence properties and the orthogonality condition. Remarkably, within this framework, certain FVE schemes achieve simultaneous superconvergence of both derivatives and function values at designated points, as demonstrated in Example 2. This is a phenomenon rarely observed in other numerical methods. Theoretical validation of these findings is provided through the proposed Generalized M-Decomposition (GMD). Numerical experiments effectively substantiate our results.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02654-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02654-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为有限体积元素(FVE)方法引入了一类新型超收敛结构。这些结构的特点是不对称和可选的超收敛点。我们建立了超收敛特性与正交条件之间的重要关系。值得注意的是,如例 2 所示,在此框架内,某些 FVE 方案在指定点实现了导数和函数值的同时超收敛。这种现象在其他数值方法中很少见。通过提出的广义 M 分解(GMD),这些发现得到了理论验证。数值实验有效地证实了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible Ultra-convergence Structures for the Finite Volume Element Method

Flexible Ultra-convergence Structures for the Finite Volume Element Method

We introduce a novel class of ultra-convergent structures for the Finite Volume Element (FVE) method. These structures are characterized by asymmetric and optional superconvergent points. We establish a crucial relationship between ultra-convergence properties and the orthogonality condition. Remarkably, within this framework, certain FVE schemes achieve simultaneous superconvergence of both derivatives and function values at designated points, as demonstrated in Example 2. This is a phenomenon rarely observed in other numerical methods. Theoretical validation of these findings is provided through the proposed Generalized M-Decomposition (GMD). Numerical experiments effectively substantiate our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信