具有不相称势垒的薛定谔方程的高精度数值方法和收敛性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kai Jiang, Shifeng Li, Juan Zhang
{"title":"具有不相称势垒的薛定谔方程的高精度数值方法和收敛性分析","authors":"Kai Jiang, Shifeng Li, Juan Zhang","doi":"10.1007/s10915-024-02658-3","DOIUrl":null,"url":null,"abstract":"<p>Numerical solving the Schrödinger equation with incommensurate potentials presents a great challenge since its solutions could be space-filling quasiperiodic structures without translational symmetry nor decay. In this paper, we propose two high-accuracy numerical methods to solve the time-dependent quasiperiodic Schrödinger equation. Concretely, we discretize the spatial variables by the quasiperiodic spectral method and the projection method, and the time variable by the second-order operator splitting method. The corresponding convergence analysis is also presented and shows that the proposed methods both have spectral convergence rates in space and second order accuracy in time, respectively. Meanwhile, we analyse the computational complexity of these numerical algorithms. One- and two-dimensional numerical results verify these convergence conclusions, and demonstrate that the projection method is more efficient.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Accuracy Numerical Methods and Convergence Analysis for Schrödinger Equation with Incommensurate Potentials\",\"authors\":\"Kai Jiang, Shifeng Li, Juan Zhang\",\"doi\":\"10.1007/s10915-024-02658-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerical solving the Schrödinger equation with incommensurate potentials presents a great challenge since its solutions could be space-filling quasiperiodic structures without translational symmetry nor decay. In this paper, we propose two high-accuracy numerical methods to solve the time-dependent quasiperiodic Schrödinger equation. Concretely, we discretize the spatial variables by the quasiperiodic spectral method and the projection method, and the time variable by the second-order operator splitting method. The corresponding convergence analysis is also presented and shows that the proposed methods both have spectral convergence rates in space and second order accuracy in time, respectively. Meanwhile, we analyse the computational complexity of these numerical algorithms. One- and two-dimensional numerical results verify these convergence conclusions, and demonstrate that the projection method is more efficient.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02658-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02658-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由于薛定谔方程的解可能是填充空间的准周期结构,既无平移对称性,也无衰减,因此对具有非对称势的薛定谔方程进行数值求解是一项巨大的挑战。在本文中,我们提出了两种高精度数值方法来求解随时间变化的准周期薛定谔方程。具体来说,我们用准周期谱法和投影法离散空间变量,用二阶算子分裂法离散时间变量。我们还给出了相应的收敛性分析,结果表明所提出的方法都分别具有空间谱收敛率和时间二阶精度。同时,我们分析了这些数值算法的计算复杂度。一维和二维数值结果验证了这些收敛结论,并证明投影法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Accuracy Numerical Methods and Convergence Analysis for Schrödinger Equation with Incommensurate Potentials

High-Accuracy Numerical Methods and Convergence Analysis for Schrödinger Equation with Incommensurate Potentials

Numerical solving the Schrödinger equation with incommensurate potentials presents a great challenge since its solutions could be space-filling quasiperiodic structures without translational symmetry nor decay. In this paper, we propose two high-accuracy numerical methods to solve the time-dependent quasiperiodic Schrödinger equation. Concretely, we discretize the spatial variables by the quasiperiodic spectral method and the projection method, and the time variable by the second-order operator splitting method. The corresponding convergence analysis is also presented and shows that the proposed methods both have spectral convergence rates in space and second order accuracy in time, respectively. Meanwhile, we analyse the computational complexity of these numerical algorithms. One- and two-dimensional numerical results verify these convergence conclusions, and demonstrate that the projection method is more efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信