多维数据的 Rank-(L, M, N) 块项分解快速算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hao Zhang, Ting-Zhu Huang, Xi-Le Zhao, Maolin Che
{"title":"多维数据的 Rank-(L, M, N) 块项分解快速算法","authors":"Hao Zhang, Ting-Zhu Huang, Xi-Le Zhao, Maolin Che","doi":"10.1007/s10915-024-02653-8","DOIUrl":null,"url":null,"abstract":"<p>Attribute to its powerful representation ability, block term decomposition (BTD) has recently attracted many views of multi-dimensional data processing, e.g., hyperspectral image unmixing and blind source separation. However, the popular alternating least squares algorithm for rank-(<i>L</i>, <i>M</i>, <i>N</i>) BTD (BTD-ALS) suffers expensive time and space costs from Kronecker products and solving low-rank approximation subproblems, hindering the deployment of BTD for real applications, especially for large-scale data. In this paper, we propose a fast sketching-based Kronecker product-free algorithm for rank-(<i>L</i>, <i>M</i>, <i>N</i>) BTD (termed as KPF-BTD), which is suitable for real-world multi-dimensional data. Specifically, we first decompose the original optimization problem into several rank-(<i>L</i>, <i>M</i>, <i>N</i>) approximation subproblems, and then we design the bilateral sketching to obtain the approximate solutions of these subproblems instead of the exact solutions, which allows us to avoid Kronecker products and rapidly solve rank-(<i>L</i>, <i>M</i>, <i>N</i>) approximation subproblems. As compared with BTD-ALS, the time and space complexities <span>\\(\\mathcal {O}{(2(p+1)(I^3LR+I^2L^2R+IL^3R)+I^3LR)}\\)</span> and <span>\\(\\mathcal {O}{(I^3)}\\)</span> of KPF-BTD are significantly cheaper than <span>\\(\\mathcal {O}{(I^3L^6R^2+I^3L^3R+I^3LR+I^2L^3R^2+I^2L^2R)}\\)</span> and <span>\\(\\mathcal {O}{(I^3L^3R)}\\)</span> of BTD-ALS, where <span>\\(p \\ll I\\)</span>. Moreover, we establish the theoretical error bound for KPF-BTD. Extensive synthetic and real experiments show KPF-BTD achieves substantial speedup and memory saving while maintaining accuracy (e.g., for a <span>\\(150\\times 150\\times 150\\)</span> synthetic tensor, the running time 0.2 seconds per iteration of KPF-BTD is significantly faster than 96.2 seconds per iteration of BTD-ALS while their accuracies are comparable).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Algorithm for Rank-(L, M, N) Block Term Decomposition of Multi-Dimensional Data\",\"authors\":\"Hao Zhang, Ting-Zhu Huang, Xi-Le Zhao, Maolin Che\",\"doi\":\"10.1007/s10915-024-02653-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Attribute to its powerful representation ability, block term decomposition (BTD) has recently attracted many views of multi-dimensional data processing, e.g., hyperspectral image unmixing and blind source separation. However, the popular alternating least squares algorithm for rank-(<i>L</i>, <i>M</i>, <i>N</i>) BTD (BTD-ALS) suffers expensive time and space costs from Kronecker products and solving low-rank approximation subproblems, hindering the deployment of BTD for real applications, especially for large-scale data. In this paper, we propose a fast sketching-based Kronecker product-free algorithm for rank-(<i>L</i>, <i>M</i>, <i>N</i>) BTD (termed as KPF-BTD), which is suitable for real-world multi-dimensional data. Specifically, we first decompose the original optimization problem into several rank-(<i>L</i>, <i>M</i>, <i>N</i>) approximation subproblems, and then we design the bilateral sketching to obtain the approximate solutions of these subproblems instead of the exact solutions, which allows us to avoid Kronecker products and rapidly solve rank-(<i>L</i>, <i>M</i>, <i>N</i>) approximation subproblems. As compared with BTD-ALS, the time and space complexities <span>\\\\(\\\\mathcal {O}{(2(p+1)(I^3LR+I^2L^2R+IL^3R)+I^3LR)}\\\\)</span> and <span>\\\\(\\\\mathcal {O}{(I^3)}\\\\)</span> of KPF-BTD are significantly cheaper than <span>\\\\(\\\\mathcal {O}{(I^3L^6R^2+I^3L^3R+I^3LR+I^2L^3R^2+I^2L^2R)}\\\\)</span> and <span>\\\\(\\\\mathcal {O}{(I^3L^3R)}\\\\)</span> of BTD-ALS, where <span>\\\\(p \\\\ll I\\\\)</span>. Moreover, we establish the theoretical error bound for KPF-BTD. Extensive synthetic and real experiments show KPF-BTD achieves substantial speedup and memory saving while maintaining accuracy (e.g., for a <span>\\\\(150\\\\times 150\\\\times 150\\\\)</span> synthetic tensor, the running time 0.2 seconds per iteration of KPF-BTD is significantly faster than 96.2 seconds per iteration of BTD-ALS while their accuracies are comparable).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02653-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02653-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

块项分解(BTD)因其强大的表示能力,近年来吸引了许多多维数据处理领域的关注,如高光谱图像解混和盲源分离。然而,目前流行的秩-(L, M, N) BTD 交替最小二乘法(BTD-ALS)因克朗克乘积和求解低秩近似子问题而耗费大量时间和空间,阻碍了 BTD 在实际应用中的部署,尤其是大规模数据的应用。在本文中,我们提出了一种基于草图的无克朗克乘的快速秩(L,M,N)BTD 算法(称为 KPF-BTD),它适用于现实世界中的多维数据。具体来说,我们首先将原始优化问题分解为多个秩(L,M,N)近似子问题,然后设计双边草图来获取这些子问题的近似解,而不是精确解,这样就可以避免克朗克积,快速求解秩(L,M,N)近似子问题。与 BTD-ALS、的时间和空间复杂度((\mathcal {O}{(2(p+1)(I^3LR+I^2L^2R+IL^3R)+I^3LR)}\) 和(\mathcal {O}{(I^3)}\)比 BTD-ALS 的 \(\mathcal {O}{(I^3L^6R^2+I^3L^3R+I^3LR+I^2L^3R^2+I^2L^2R)}\) 和 \(\mathcal {O}{(I^3L^3R)}\) 便宜得多、其中 \(p \ll I\).此外,我们还建立了 KPF-BTD 的理论误差边界。大量的合成和实际实验表明,KPF-BTD在保持精度的同时,实现了大幅提速和内存节省(例如,对于一个(150乘以150乘以150)合成张量,KPF-BTD每次迭代的运行时间为0.2秒,明显快于BTD-ALS每次迭代的96.2秒,而两者的精度相当)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Fast Algorithm for Rank-(L, M, N) Block Term Decomposition of Multi-Dimensional Data

A Fast Algorithm for Rank-(L, M, N) Block Term Decomposition of Multi-Dimensional Data

Attribute to its powerful representation ability, block term decomposition (BTD) has recently attracted many views of multi-dimensional data processing, e.g., hyperspectral image unmixing and blind source separation. However, the popular alternating least squares algorithm for rank-(LMN) BTD (BTD-ALS) suffers expensive time and space costs from Kronecker products and solving low-rank approximation subproblems, hindering the deployment of BTD for real applications, especially for large-scale data. In this paper, we propose a fast sketching-based Kronecker product-free algorithm for rank-(LMN) BTD (termed as KPF-BTD), which is suitable for real-world multi-dimensional data. Specifically, we first decompose the original optimization problem into several rank-(LMN) approximation subproblems, and then we design the bilateral sketching to obtain the approximate solutions of these subproblems instead of the exact solutions, which allows us to avoid Kronecker products and rapidly solve rank-(LMN) approximation subproblems. As compared with BTD-ALS, the time and space complexities \(\mathcal {O}{(2(p+1)(I^3LR+I^2L^2R+IL^3R)+I^3LR)}\) and \(\mathcal {O}{(I^3)}\) of KPF-BTD are significantly cheaper than \(\mathcal {O}{(I^3L^6R^2+I^3L^3R+I^3LR+I^2L^3R^2+I^2L^2R)}\) and \(\mathcal {O}{(I^3L^3R)}\) of BTD-ALS, where \(p \ll I\). Moreover, we establish the theoretical error bound for KPF-BTD. Extensive synthetic and real experiments show KPF-BTD achieves substantial speedup and memory saving while maintaining accuracy (e.g., for a \(150\times 150\times 150\) synthetic tensor, the running time 0.2 seconds per iteration of KPF-BTD is significantly faster than 96.2 seconds per iteration of BTD-ALS while their accuracies are comparable).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信