{"title":"利用变换器在异构存储器上实现智能页面迁移","authors":"Songwen Pei, Wei Qin, Jianan Li, Junhao Tan, Jie Tang, Jean-Luc Gaudiot","doi":"10.1007/s10766-024-00776-x","DOIUrl":null,"url":null,"abstract":"<p>Locality-based migration strategies are widely used in existing memory space management. Such type of strategies are consistently confronts with challenges in efficiently managing pages migration within constrained memory space, especially when new architecture such as hybrid of DRAM and NVM are emerging. Here we propose TransMigrator, an innovative predictive page migration model based on transformer architecture, which obtains a qualitative leap in the breadth and accuracy of prediction compared with traditional local-based methods. TransMigrator utilizes an end-to-end neural network to learn memory access behavior and page migration record in the long-term history and predict the most likely next page to fetch. Furthermore, a migration-management mechanism is designed to support the page-feeding from predictor, which in another way enhance the model robustness. The model achieves an average prediction accuracy better than 0.72, and saves an average of 0.24 access time overhead compared to strategies such as AC-CLOCK, THMigrator, and VC-HMM.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"19 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Page Migration on Heterogeneous Memory by Using Transformer\",\"authors\":\"Songwen Pei, Wei Qin, Jianan Li, Junhao Tan, Jie Tang, Jean-Luc Gaudiot\",\"doi\":\"10.1007/s10766-024-00776-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Locality-based migration strategies are widely used in existing memory space management. Such type of strategies are consistently confronts with challenges in efficiently managing pages migration within constrained memory space, especially when new architecture such as hybrid of DRAM and NVM are emerging. Here we propose TransMigrator, an innovative predictive page migration model based on transformer architecture, which obtains a qualitative leap in the breadth and accuracy of prediction compared with traditional local-based methods. TransMigrator utilizes an end-to-end neural network to learn memory access behavior and page migration record in the long-term history and predict the most likely next page to fetch. Furthermore, a migration-management mechanism is designed to support the page-feeding from predictor, which in another way enhance the model robustness. The model achieves an average prediction accuracy better than 0.72, and saves an average of 0.24 access time overhead compared to strategies such as AC-CLOCK, THMigrator, and VC-HMM.</p>\",\"PeriodicalId\":14313,\"journal\":{\"name\":\"International Journal of Parallel Programming\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10766-024-00776-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00776-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Intelligent Page Migration on Heterogeneous Memory by Using Transformer
Locality-based migration strategies are widely used in existing memory space management. Such type of strategies are consistently confronts with challenges in efficiently managing pages migration within constrained memory space, especially when new architecture such as hybrid of DRAM and NVM are emerging. Here we propose TransMigrator, an innovative predictive page migration model based on transformer architecture, which obtains a qualitative leap in the breadth and accuracy of prediction compared with traditional local-based methods. TransMigrator utilizes an end-to-end neural network to learn memory access behavior and page migration record in the long-term history and predict the most likely next page to fetch. Furthermore, a migration-management mechanism is designed to support the page-feeding from predictor, which in another way enhance the model robustness. The model achieves an average prediction accuracy better than 0.72, and saves an average of 0.24 access time overhead compared to strategies such as AC-CLOCK, THMigrator, and VC-HMM.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.