Mallikarjuna N. Nadagouda, Gaiven Varshney, Vikas Varshney, Charifa A. Hejase
{"title":"磷酸盐去除和回收技术的最新进展:综述","authors":"Mallikarjuna N. Nadagouda, Gaiven Varshney, Vikas Varshney, Charifa A. Hejase","doi":"10.1021/acsenvironau.3c00069","DOIUrl":null,"url":null,"abstract":"Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO<sub>3</sub><sup>–</sup>, HCO<sub>3</sub><sup>–</sup>, Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Technologies for Phosphate Removal and Recovery: A Review\",\"authors\":\"Mallikarjuna N. Nadagouda, Gaiven Varshney, Vikas Varshney, Charifa A. Hejase\",\"doi\":\"10.1021/acsenvironau.3c00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO<sub>3</sub><sup>–</sup>, HCO<sub>3</sub><sup>–</sup>, Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenvironau.3c00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsenvironau.3c00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Recent Advances in Technologies for Phosphate Removal and Recovery: A Review
Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO3–, HCO3–, Cl–, SO42–), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management