Sujit Jung Karki, Paola Pilo, Colleen Lawless, Nikolaos Mastrodimos, Jimmy Burke, Anna Tiley, Angela Feechan, Angela Feechan
{"title":"三尖镰孢菌效应子 Zt-11 对小麦侵染性的影响","authors":"Sujit Jung Karki, Paola Pilo, Colleen Lawless, Nikolaos Mastrodimos, Jimmy Burke, Anna Tiley, Angela Feechan, Angela Feechan","doi":"10.1101/2024.09.04.611169","DOIUrl":null,"url":null,"abstract":"Zymoseptoria tritici is an ascomycete fungus and the causal agent of Septoria tritici leaf blotch (STB) in wheat. Z. tritici secretes an array of effector proteins that are likely to facilitate host infection, colonisation and pycnidia production. In this study we demonstrate a role for Zt-11 as a Z. tritici effector during disease progression. Zt-11 is upregulated during the transition of the pathogen\nfrom the biotrophic to necrotrophic phase of wheat infection. Deletion of Zt-11 delayed disease development in wheat, reducing the number and size of pycnidia, as well as the number of macropycnidiospores produced by Z. tritici. This delayed disease development by the deltaZt-11 mutants was accompanied by a lower induction of PR genes in wheat, when compared to infection with wildtype Z. tritici. Overall, these data suggest that Zt-11 plays a role in Z. tritici aggressiveness and STB disease progression possibly via a salicylic acid associated pathway.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Zymoseptoria tritici effector Zt-11 contributes to aggressiveness in wheat\",\"authors\":\"Sujit Jung Karki, Paola Pilo, Colleen Lawless, Nikolaos Mastrodimos, Jimmy Burke, Anna Tiley, Angela Feechan, Angela Feechan\",\"doi\":\"10.1101/2024.09.04.611169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zymoseptoria tritici is an ascomycete fungus and the causal agent of Septoria tritici leaf blotch (STB) in wheat. Z. tritici secretes an array of effector proteins that are likely to facilitate host infection, colonisation and pycnidia production. In this study we demonstrate a role for Zt-11 as a Z. tritici effector during disease progression. Zt-11 is upregulated during the transition of the pathogen\\nfrom the biotrophic to necrotrophic phase of wheat infection. Deletion of Zt-11 delayed disease development in wheat, reducing the number and size of pycnidia, as well as the number of macropycnidiospores produced by Z. tritici. This delayed disease development by the deltaZt-11 mutants was accompanied by a lower induction of PR genes in wheat, when compared to infection with wildtype Z. tritici. Overall, these data suggest that Zt-11 plays a role in Z. tritici aggressiveness and STB disease progression possibly via a salicylic acid associated pathway.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
三尖孢霉菌(Zymoseptoria tritici)是一种子囊真菌,是小麦三尖孢(Septoria tritici)叶斑病(STB)的病原菌。Z. tritici分泌一系列效应蛋白,这些蛋白可能有助于宿主感染、定殖和产生菌丝。在本研究中,我们证明了 Zt-11 在病害发展过程中作为 Z. tritici 效应蛋白的作用。在病原体从小麦感染的生物营养阶段向坏死营养阶段过渡的过程中,Zt-11 被上调。Zt-11的缺失会延缓小麦的病害发展,减少胞囊的数量和大小,并减少三尖杉球孢子虫产生的大孢子数量。与感染野生型 Z. tritici 相比,deltaZt-11 突变体的病害发展延迟伴随着较低的 PR 基因诱导。总之,这些数据表明,Zt-11 可能通过与水杨酸相关的途径在 Z. tritici 的侵染性和 STB 病害发展中发挥作用。
The Zymoseptoria tritici effector Zt-11 contributes to aggressiveness in wheat
Zymoseptoria tritici is an ascomycete fungus and the causal agent of Septoria tritici leaf blotch (STB) in wheat. Z. tritici secretes an array of effector proteins that are likely to facilitate host infection, colonisation and pycnidia production. In this study we demonstrate a role for Zt-11 as a Z. tritici effector during disease progression. Zt-11 is upregulated during the transition of the pathogen
from the biotrophic to necrotrophic phase of wheat infection. Deletion of Zt-11 delayed disease development in wheat, reducing the number and size of pycnidia, as well as the number of macropycnidiospores produced by Z. tritici. This delayed disease development by the deltaZt-11 mutants was accompanied by a lower induction of PR genes in wheat, when compared to infection with wildtype Z. tritici. Overall, these data suggest that Zt-11 plays a role in Z. tritici aggressiveness and STB disease progression possibly via a salicylic acid associated pathway.