在不同环境下确定不同最终用途的温带玉米杂交种的粒重和源/汇比率

Yesica Daniela Chazarreta, Santiago Alvarez Prado, Maria Elena Otegui
{"title":"在不同环境下确定不同最终用途的温带玉米杂交种的粒重和源/汇比率","authors":"Yesica Daniela Chazarreta, Santiago Alvarez Prado, Maria Elena Otegui","doi":"10.1101/2024.09.06.611734","DOIUrl":null,"url":null,"abstract":"Maize (Zea mays L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowings, expanding its productive area, and diversifying crop end-uses. This study evaluated environment (two years × two sowing dates) and management practices (two nitrogen levels) effects on kernel weight, its physiological determinants, source/sink ratios, and water-soluble carbohydrates in stem (WSCS) of eight temperate maize hybrids bred for different uses (3 graniferous, 2 dual-purpose, 2 silage). Crop growth simulations allowed the estimation of percent variation in WSCS remobilization (null, partial, or total) for different production systems (18 scenarios) and climate conditions (41 growing seasons). Nitrogen fertilization increased kernel weight in early sowings, with minimal effects in late sowings. WSCS remobilization during kernel filling was higher in late than in early sowings, with no differences among hybrid types. Regarding hybrid types, dual-purpose and silage hybrids showed the highest and the lowest kernel weight respectively, and graniferous hybrids had the highest source/sink ratio during the effective kernel-filling period. Simulations underscored the importance of sowing date and nitrogen supply on WSCS for irrigated and dryland maize farming systems in a temperate environment, with important implications for grain and silage production at the farm level.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel weight and source/sink ratio determination of temperate maize hybrids with different end uses under contrasting environments\",\"authors\":\"Yesica Daniela Chazarreta, Santiago Alvarez Prado, Maria Elena Otegui\",\"doi\":\"10.1101/2024.09.06.611734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maize (Zea mays L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowings, expanding its productive area, and diversifying crop end-uses. This study evaluated environment (two years × two sowing dates) and management practices (two nitrogen levels) effects on kernel weight, its physiological determinants, source/sink ratios, and water-soluble carbohydrates in stem (WSCS) of eight temperate maize hybrids bred for different uses (3 graniferous, 2 dual-purpose, 2 silage). Crop growth simulations allowed the estimation of percent variation in WSCS remobilization (null, partial, or total) for different production systems (18 scenarios) and climate conditions (41 growing seasons). Nitrogen fertilization increased kernel weight in early sowings, with minimal effects in late sowings. WSCS remobilization during kernel filling was higher in late than in early sowings, with no differences among hybrid types. Regarding hybrid types, dual-purpose and silage hybrids showed the highest and the lowest kernel weight respectively, and graniferous hybrids had the highest source/sink ratio during the effective kernel-filling period. Simulations underscored the importance of sowing date and nitrogen supply on WSCS for irrigated and dryland maize farming systems in a temperate environment, with important implications for grain and silage production at the farm level.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于广泛采用晚播、扩大生产面积和作物最终用途多样化,阿根廷的玉米(Zea mays L.)生产在过去十年中发生了显著变化。本研究评估了环境(两年×两个播种期)和管理方法(两种氮水平)对 8 个温带玉米杂交种(3 个粒用、2 个两用、2 个青贮)的籽粒重量、其生理决定因素、源/汇比率和茎秆中的水溶性碳水化合物(WSCS)的影响。通过模拟作物生长,可以估算出不同生产系统(18 种方案)和气候条件(41 个生长季节)下 WSCS 再动员(空、部分或全部)的百分比变化。氮肥可增加早期播种的籽粒重量,对晚期播种的影响极小。晚播比早播在籽粒充实期的 WSCS 再动员率更高,杂交种类型之间没有差异。在杂交种类型方面,两用杂交种和青贮杂交种的籽粒重量分别最高和最低,颗粒杂交种在有效籽粒填充期的源/汇比率最高。模拟结果强调了播种日期和氮素供应对温带灌溉和旱地玉米耕作制度WSCS的重要性,对农场的谷物和青贮饲料生产具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel weight and source/sink ratio determination of temperate maize hybrids with different end uses under contrasting environments
Maize (Zea mays L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowings, expanding its productive area, and diversifying crop end-uses. This study evaluated environment (two years × two sowing dates) and management practices (two nitrogen levels) effects on kernel weight, its physiological determinants, source/sink ratios, and water-soluble carbohydrates in stem (WSCS) of eight temperate maize hybrids bred for different uses (3 graniferous, 2 dual-purpose, 2 silage). Crop growth simulations allowed the estimation of percent variation in WSCS remobilization (null, partial, or total) for different production systems (18 scenarios) and climate conditions (41 growing seasons). Nitrogen fertilization increased kernel weight in early sowings, with minimal effects in late sowings. WSCS remobilization during kernel filling was higher in late than in early sowings, with no differences among hybrid types. Regarding hybrid types, dual-purpose and silage hybrids showed the highest and the lowest kernel weight respectively, and graniferous hybrids had the highest source/sink ratio during the effective kernel-filling period. Simulations underscored the importance of sowing date and nitrogen supply on WSCS for irrigated and dryland maize farming systems in a temperate environment, with important implications for grain and silage production at the farm level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信