{"title":"开发明亮的荧光辅助素","authors":"Tsuyoshi Aoyama, Masakazu Nambo, Jia Xin Yap, Ayami Nakagawa, Marina Hayashi, Yuko Ukai, Motoo Ohtsuka, Ken-ichiro Hayashi, Yoshikatsu Sato, Yuichiro Tsuchiya","doi":"10.1101/2024.09.11.612572","DOIUrl":null,"url":null,"abstract":"Polar transport of the phytohormone auxin plays a crucial role in plant growth and response to environmental stimuli. Small-molecule tools that visualize auxin distribution in intact plants enable us to understand how plants dynamically regulate auxin transport to modulate growth. In this study, we developed a new fluorescent auxin probe, BODIPY-IAA2, which effectively visualizes auxin distribution in various plant tissues. We designed this probe to be transported by auxin transporters while lacking the ability to elicit auxin signaling. Using BODIPY as the fluorophore provides bright and stable fluorescence signals, making it suitable for live-imaging under standard fluorescent microscopy. We tested the probe with auxin reporter lines in <em>Arabidopsis</em> and performed yeast two-hybrid assays. The results showed that BODIPY-IAA2 did not activate auxin signaling through the auxin receptor TIR1. However, BODIPY-IAA2 did mildly compete with both exogenous and endogenous auxins for transport, indicating that the probe is transported by auxin transporters <em>in vivo</em>. The probe not only enables visualization of its tissue distribution but also allows sub-cellular staining, including the endoplasmic reticulum and tip regions in elongating cells in moss. We also observed unusual staining patterns in the main root of non-model parasitic plants where genetic transformation is not feasible. Our new fluorescent auxin probe demonstrates significant potential for detailed studies on auxin transport and distribution across diverse plant species.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of bright fluorescent auxin\",\"authors\":\"Tsuyoshi Aoyama, Masakazu Nambo, Jia Xin Yap, Ayami Nakagawa, Marina Hayashi, Yuko Ukai, Motoo Ohtsuka, Ken-ichiro Hayashi, Yoshikatsu Sato, Yuichiro Tsuchiya\",\"doi\":\"10.1101/2024.09.11.612572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polar transport of the phytohormone auxin plays a crucial role in plant growth and response to environmental stimuli. Small-molecule tools that visualize auxin distribution in intact plants enable us to understand how plants dynamically regulate auxin transport to modulate growth. In this study, we developed a new fluorescent auxin probe, BODIPY-IAA2, which effectively visualizes auxin distribution in various plant tissues. We designed this probe to be transported by auxin transporters while lacking the ability to elicit auxin signaling. Using BODIPY as the fluorophore provides bright and stable fluorescence signals, making it suitable for live-imaging under standard fluorescent microscopy. We tested the probe with auxin reporter lines in <em>Arabidopsis</em> and performed yeast two-hybrid assays. The results showed that BODIPY-IAA2 did not activate auxin signaling through the auxin receptor TIR1. However, BODIPY-IAA2 did mildly compete with both exogenous and endogenous auxins for transport, indicating that the probe is transported by auxin transporters <em>in vivo</em>. The probe not only enables visualization of its tissue distribution but also allows sub-cellular staining, including the endoplasmic reticulum and tip regions in elongating cells in moss. We also observed unusual staining patterns in the main root of non-model parasitic plants where genetic transformation is not feasible. Our new fluorescent auxin probe demonstrates significant potential for detailed studies on auxin transport and distribution across diverse plant species.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polar transport of the phytohormone auxin plays a crucial role in plant growth and response to environmental stimuli. Small-molecule tools that visualize auxin distribution in intact plants enable us to understand how plants dynamically regulate auxin transport to modulate growth. In this study, we developed a new fluorescent auxin probe, BODIPY-IAA2, which effectively visualizes auxin distribution in various plant tissues. We designed this probe to be transported by auxin transporters while lacking the ability to elicit auxin signaling. Using BODIPY as the fluorophore provides bright and stable fluorescence signals, making it suitable for live-imaging under standard fluorescent microscopy. We tested the probe with auxin reporter lines in Arabidopsis and performed yeast two-hybrid assays. The results showed that BODIPY-IAA2 did not activate auxin signaling through the auxin receptor TIR1. However, BODIPY-IAA2 did mildly compete with both exogenous and endogenous auxins for transport, indicating that the probe is transported by auxin transporters in vivo. The probe not only enables visualization of its tissue distribution but also allows sub-cellular staining, including the endoplasmic reticulum and tip regions in elongating cells in moss. We also observed unusual staining patterns in the main root of non-model parasitic plants where genetic transformation is not feasible. Our new fluorescent auxin probe demonstrates significant potential for detailed studies on auxin transport and distribution across diverse plant species.