前沿|巢穴安置是热暴露的次要原因:对多种选择的启示

IF 2.4 3区 环境科学与生态学 Q2 ECOLOGY
Jonathan Harris, Scott McMurry
{"title":"前沿|巢穴安置是热暴露的次要原因:对多种选择的启示","authors":"Jonathan Harris, Scott McMurry","doi":"10.3389/fevo.2024.1417573","DOIUrl":null,"url":null,"abstract":"IntroductionMultifarious selective pressures can interact to affect species’ life history evolution, with predation and thermal exposure as selective pressures for nesting birds. Gray Vireos (Vireo vicinior) seemingly nest on the periphery of their nesting substrate because of lower predation rates, thereby increasing exposure to weather. We explored how nest placement and vegetation structure can be used to account for the increased weather exposure that Gray Vireos experience when nesting on the periphery of the nesting substrate to avoid predation.MethodsFor each Gray Vireo nest, we placed temperature and light data loggers at three locations: at the nest site, at the opposite orientation of the nest within the nesting tree, and at the same orientation of the nest but in an adjacent tree. To measure nest orientation, we recorded the inverse compass azimuth (+/−1°) from the nest toward the trunk of the nesting tree, while accounting for declination. Nest temperatures and light exposure were compared across various dimensions of nest placement.ResultsThe orientation of nests was cooler than the opposite orientation in the mornings and in the late afternoons. When nests were placed in hotter orientations (e.g., south- or west-facing), nests surrounded by more foliage or placed closer to the interior of trees could compensate for the increased exposure.DiscussionOur findings suggest Gray Vireos accounted for the increased thermal exposure that comes from predator avoidance by using secondary dimensions of nest placement. Specifically, nests could be placed in orientations with cooler temperatures or in hotter orientations with greater shade potential. These results highlight how the interactive selection pressures of predation risk and microclimate can be tiered and shape life-history characteristics of birds.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"54 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Nest placement accounts for thermal exposure secondarily: insights on multifarious selection\",\"authors\":\"Jonathan Harris, Scott McMurry\",\"doi\":\"10.3389/fevo.2024.1417573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionMultifarious selective pressures can interact to affect species’ life history evolution, with predation and thermal exposure as selective pressures for nesting birds. Gray Vireos (Vireo vicinior) seemingly nest on the periphery of their nesting substrate because of lower predation rates, thereby increasing exposure to weather. We explored how nest placement and vegetation structure can be used to account for the increased weather exposure that Gray Vireos experience when nesting on the periphery of the nesting substrate to avoid predation.MethodsFor each Gray Vireo nest, we placed temperature and light data loggers at three locations: at the nest site, at the opposite orientation of the nest within the nesting tree, and at the same orientation of the nest but in an adjacent tree. To measure nest orientation, we recorded the inverse compass azimuth (+/−1°) from the nest toward the trunk of the nesting tree, while accounting for declination. Nest temperatures and light exposure were compared across various dimensions of nest placement.ResultsThe orientation of nests was cooler than the opposite orientation in the mornings and in the late afternoons. When nests were placed in hotter orientations (e.g., south- or west-facing), nests surrounded by more foliage or placed closer to the interior of trees could compensate for the increased exposure.DiscussionOur findings suggest Gray Vireos accounted for the increased thermal exposure that comes from predator avoidance by using secondary dimensions of nest placement. Specifically, nests could be placed in orientations with cooler temperatures or in hotter orientations with greater shade potential. These results highlight how the interactive selection pressures of predation risk and microclimate can be tiered and shape life-history characteristics of birds.\",\"PeriodicalId\":12367,\"journal\":{\"name\":\"Frontiers in Ecology and Evolution\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Ecology and Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fevo.2024.1417573\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1417573","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

引言多种选择性压力相互作用,影响物种生活史的演化,其中捕食和热暴露是筑巢鸟类的选择性压力。由于捕食率较低,灰慧鸟(Vireo vicinior)似乎在筑巢基质的外围筑巢,从而增加了受天气影响的程度。我们探讨了如何利用巢的位置和植被结构来解释灰慧莺在筑巢基质外围筑巢以避免被捕食而增加的受天气影响的程度。方法对于每个灰慧莺的巢,我们在三个位置放置了温度和光照数据记录器:巢的位置、巢在筑巢树上的相反方向以及巢的相同方向但在邻近的树上。为了测量巢的方位,我们记录了从巢到巢树树干的反罗盘方位角(+/-1°),同时考虑了偏角。结果在上午和下午晚些时候,巢的朝向比相反的朝向凉爽。讨论我们的研究结果表明,灰尾鹩莺通过利用巢的次要摆放维度来弥补因躲避捕食者而增加的热暴露。具体来说,可以将巢放置在温度较低的方位,或放置在有更大遮荫潜力的较热方位。这些结果突显了捕食风险和小气候的交互选择压力是如何分层并形成鸟类的生活史特征的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frontiers | Nest placement accounts for thermal exposure secondarily: insights on multifarious selection
IntroductionMultifarious selective pressures can interact to affect species’ life history evolution, with predation and thermal exposure as selective pressures for nesting birds. Gray Vireos (Vireo vicinior) seemingly nest on the periphery of their nesting substrate because of lower predation rates, thereby increasing exposure to weather. We explored how nest placement and vegetation structure can be used to account for the increased weather exposure that Gray Vireos experience when nesting on the periphery of the nesting substrate to avoid predation.MethodsFor each Gray Vireo nest, we placed temperature and light data loggers at three locations: at the nest site, at the opposite orientation of the nest within the nesting tree, and at the same orientation of the nest but in an adjacent tree. To measure nest orientation, we recorded the inverse compass azimuth (+/−1°) from the nest toward the trunk of the nesting tree, while accounting for declination. Nest temperatures and light exposure were compared across various dimensions of nest placement.ResultsThe orientation of nests was cooler than the opposite orientation in the mornings and in the late afternoons. When nests were placed in hotter orientations (e.g., south- or west-facing), nests surrounded by more foliage or placed closer to the interior of trees could compensate for the increased exposure.DiscussionOur findings suggest Gray Vireos accounted for the increased thermal exposure that comes from predator avoidance by using secondary dimensions of nest placement. Specifically, nests could be placed in orientations with cooler temperatures or in hotter orientations with greater shade potential. These results highlight how the interactive selection pressures of predation risk and microclimate can be tiered and shape life-history characteristics of birds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Ecology and Evolution
Frontiers in Ecology and Evolution Environmental Science-Ecology
CiteScore
4.00
自引率
6.70%
发文量
1143
审稿时长
12 weeks
期刊介绍: Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference. The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信