Malvika Sagwal, Moumita Maiti, Rishabh Kumar, Pavneet Kaur, Ankur Singh, Himanshu Sharma, Yasir Arafat, Chandra Kumar, Gonika, J. Gehlot, S. Nath, N. Madhavan
{"title":"研究围绕势垒的 $$^{30}\\hbox {Si+}^{140}\\hbox {Ce}$$ 反应中的聚变属性","authors":"Malvika Sagwal, Moumita Maiti, Rishabh Kumar, Pavneet Kaur, Ankur Singh, Himanshu Sharma, Yasir Arafat, Chandra Kumar, Gonika, J. Gehlot, S. Nath, N. Madhavan","doi":"10.1140/epja/s10050-024-01394-4","DOIUrl":null,"url":null,"abstract":"<div><p>In heavy-ion collision experiments, the fusion cross section in the sub-barrier energy region is found to be enhanced by several orders of magnitude in comparison to the prediction of the one-dimensional barrier penetration model (1D-BPM) that involves the quantum mechanical tunneling effect during fusion. So far, the coupling-aided tunneling due to participating nuclei’s intrinsic degrees of freedom continues to be identified as an accountable factor. We intend to probe the role of structural properties and low-lying inelastic excitations of the colliding nuclei in driving the fusion phenomenon for energies in the near and sub-barrier regions. In the study, the fusion excitation function has been measured for <span>\\(^{30}\\hbox {Si+}^{140}\\hbox {Ce}\\)</span> reaction for energies <span>\\(\\approx \\)</span> 11% below to 13% above the Coulomb barrier. The measured fusion cross section is found to be noticeably enhanced in the sub-barrier region compared to the corresponding 1D-BPM prediction. The coupled-channel (CC) formalism in the <span>ccfull</span> framework has been employed to interpret the aforementioned intricate processes involved in fusion. The present results have been compared with those of a few nearby mass systems to understand different aspects of channel coupling in heavy-ion fusion.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating fusion attributes in \\\\(^{30}\\\\hbox {Si+}^{140}\\\\hbox {Ce}\\\\) reaction around the barrier\",\"authors\":\"Malvika Sagwal, Moumita Maiti, Rishabh Kumar, Pavneet Kaur, Ankur Singh, Himanshu Sharma, Yasir Arafat, Chandra Kumar, Gonika, J. Gehlot, S. Nath, N. Madhavan\",\"doi\":\"10.1140/epja/s10050-024-01394-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In heavy-ion collision experiments, the fusion cross section in the sub-barrier energy region is found to be enhanced by several orders of magnitude in comparison to the prediction of the one-dimensional barrier penetration model (1D-BPM) that involves the quantum mechanical tunneling effect during fusion. So far, the coupling-aided tunneling due to participating nuclei’s intrinsic degrees of freedom continues to be identified as an accountable factor. We intend to probe the role of structural properties and low-lying inelastic excitations of the colliding nuclei in driving the fusion phenomenon for energies in the near and sub-barrier regions. In the study, the fusion excitation function has been measured for <span>\\\\(^{30}\\\\hbox {Si+}^{140}\\\\hbox {Ce}\\\\)</span> reaction for energies <span>\\\\(\\\\approx \\\\)</span> 11% below to 13% above the Coulomb barrier. The measured fusion cross section is found to be noticeably enhanced in the sub-barrier region compared to the corresponding 1D-BPM prediction. The coupled-channel (CC) formalism in the <span>ccfull</span> framework has been employed to interpret the aforementioned intricate processes involved in fusion. The present results have been compared with those of a few nearby mass systems to understand different aspects of channel coupling in heavy-ion fusion.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"60 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01394-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01394-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Investigating fusion attributes in \(^{30}\hbox {Si+}^{140}\hbox {Ce}\) reaction around the barrier
In heavy-ion collision experiments, the fusion cross section in the sub-barrier energy region is found to be enhanced by several orders of magnitude in comparison to the prediction of the one-dimensional barrier penetration model (1D-BPM) that involves the quantum mechanical tunneling effect during fusion. So far, the coupling-aided tunneling due to participating nuclei’s intrinsic degrees of freedom continues to be identified as an accountable factor. We intend to probe the role of structural properties and low-lying inelastic excitations of the colliding nuclei in driving the fusion phenomenon for energies in the near and sub-barrier regions. In the study, the fusion excitation function has been measured for \(^{30}\hbox {Si+}^{140}\hbox {Ce}\) reaction for energies \(\approx \) 11% below to 13% above the Coulomb barrier. The measured fusion cross section is found to be noticeably enhanced in the sub-barrier region compared to the corresponding 1D-BPM prediction. The coupled-channel (CC) formalism in the ccfull framework has been employed to interpret the aforementioned intricate processes involved in fusion. The present results have been compared with those of a few nearby mass systems to understand different aspects of channel coupling in heavy-ion fusion.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.