Jon Sertucha, Jacques Lacaze, Anna Regordosa, Ramon Suarez
{"title":"硅含量高达 4.5 wt% 的铁-碳-硅稳定相图的多项式描述,包括铬、铜、锰和磷的影响","authors":"Jon Sertucha, Jacques Lacaze, Anna Regordosa, Ramon Suarez","doi":"10.1007/s40962-024-01428-z","DOIUrl":null,"url":null,"abstract":"<p>Knowledge of the relevant stable equilibrium phase diagram is a prerequisite for taking account of deviations from equilibrium when modeling the solidification of silicon cast irons. While a linear description is practical for silicon contents up to 3 wt%, the curvature of the austenite liquidus at higher silicon contents necessitates the use of second-order polynomials. This study was carried out with the aim of obtaining an accurate description up to 4.5 wt% silicon, representative of today’s emerging high-silicon cast irons. In addition, alloying with up to 1 wt% copper, 0.5 wt% manganese and 0.25 wt% chromium and phosphorus was considered. In parallel to a description of the liquidus of austenite and graphite, the austenite-liquid partition coefficients of all alloying elements have been described. This paves the way for future work aimed at providing an accurate description of microsegregation and other non-equilibrium phenomena occurring during the solidification of silicon cast irons.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial Description of the Fe–C–Si Stable Phase Diagram for up to 4.5 wt% Si, Including the Effect of Cr, Cu, Mn and P\",\"authors\":\"Jon Sertucha, Jacques Lacaze, Anna Regordosa, Ramon Suarez\",\"doi\":\"10.1007/s40962-024-01428-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knowledge of the relevant stable equilibrium phase diagram is a prerequisite for taking account of deviations from equilibrium when modeling the solidification of silicon cast irons. While a linear description is practical for silicon contents up to 3 wt%, the curvature of the austenite liquidus at higher silicon contents necessitates the use of second-order polynomials. This study was carried out with the aim of obtaining an accurate description up to 4.5 wt% silicon, representative of today’s emerging high-silicon cast irons. In addition, alloying with up to 1 wt% copper, 0.5 wt% manganese and 0.25 wt% chromium and phosphorus was considered. In parallel to a description of the liquidus of austenite and graphite, the austenite-liquid partition coefficients of all alloying elements have been described. This paves the way for future work aimed at providing an accurate description of microsegregation and other non-equilibrium phenomena occurring during the solidification of silicon cast irons.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01428-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01428-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Polynomial Description of the Fe–C–Si Stable Phase Diagram for up to 4.5 wt% Si, Including the Effect of Cr, Cu, Mn and P
Knowledge of the relevant stable equilibrium phase diagram is a prerequisite for taking account of deviations from equilibrium when modeling the solidification of silicon cast irons. While a linear description is practical for silicon contents up to 3 wt%, the curvature of the austenite liquidus at higher silicon contents necessitates the use of second-order polynomials. This study was carried out with the aim of obtaining an accurate description up to 4.5 wt% silicon, representative of today’s emerging high-silicon cast irons. In addition, alloying with up to 1 wt% copper, 0.5 wt% manganese and 0.25 wt% chromium and phosphorus was considered. In parallel to a description of the liquidus of austenite and graphite, the austenite-liquid partition coefficients of all alloying elements have been described. This paves the way for future work aimed at providing an accurate description of microsegregation and other non-equilibrium phenomena occurring during the solidification of silicon cast irons.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).