{"title":"结合肠道微生物群和转录组分析研究不同放养密度对太平洋南美白对虾(Litopenaeus vannamei)利用小球藻(Chlorella sorokiniana)能力的影响","authors":"Hang Yuan, Minghua Xie, Jian Chen, Naijie Hu, Honming Wang, Beiping Tan, Lili Shi, Shuang Zhang","doi":"10.1016/j.aninu.2024.04.008","DOIUrl":null,"url":null,"abstract":"Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp () to utilize (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m), medium (MSD; 200 per m) and high (HSD; 300 per m) stocking densities for 8 weeks. The growth performance and resistance to (1.0 × 10 CFU/mL) of shrimp decreased with the increase of stocking density, but dietary CHL improved this result. Differences between the CHL and FM groups for . resistance were significant only under high-density conditions ( < 0.05). Significant interactions between stocking density and protein source were found on the activities of catalase (CAT), superoxide dismutase (SOD) and phenol oxidase (PO), and the contents of malondialdehyde (MDA) in the hepatopancreas and the activities of intestinal amylase, most of which were significantly different between CHL and FM groups only at high stocking density ( < 0.05). Analysis of 16S rDNA sequencing showed that dietary CHL increased the alpha diversity of intestinal microbiota, inhibited the colonization of pathogenic bacteria and enhanced the abundance of beneficial bacteria. Transcriptomic results showed that at high stocking densities, differentially expressed genes (DEGs) in the FM vs CHL group were mostly upregulated and primarily enriched in immune and metabolic related pathways including Toll, immune deficiency (Imd) and glycolysis–gluconeogenesis pathways. Pearson correlation analysis revealed significant correlation between the top ten intestinal bacteria at the genus level and markedly enriched DEGs, also more were detected under high density situations. In conclusion, CHL has great potential as a novel protein source in the intensive farming of shrimp.","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"12 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined intestinal microbiota and transcriptomic analysis to investigate the effect of different stocking densities on the ability of Pacific white shrimp (Litopenaeus vannamei) to utilize Chlorella sorokiniana\",\"authors\":\"Hang Yuan, Minghua Xie, Jian Chen, Naijie Hu, Honming Wang, Beiping Tan, Lili Shi, Shuang Zhang\",\"doi\":\"10.1016/j.aninu.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp () to utilize (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m), medium (MSD; 200 per m) and high (HSD; 300 per m) stocking densities for 8 weeks. The growth performance and resistance to (1.0 × 10 CFU/mL) of shrimp decreased with the increase of stocking density, but dietary CHL improved this result. Differences between the CHL and FM groups for . resistance were significant only under high-density conditions ( < 0.05). Significant interactions between stocking density and protein source were found on the activities of catalase (CAT), superoxide dismutase (SOD) and phenol oxidase (PO), and the contents of malondialdehyde (MDA) in the hepatopancreas and the activities of intestinal amylase, most of which were significantly different between CHL and FM groups only at high stocking density ( < 0.05). Analysis of 16S rDNA sequencing showed that dietary CHL increased the alpha diversity of intestinal microbiota, inhibited the colonization of pathogenic bacteria and enhanced the abundance of beneficial bacteria. Transcriptomic results showed that at high stocking densities, differentially expressed genes (DEGs) in the FM vs CHL group were mostly upregulated and primarily enriched in immune and metabolic related pathways including Toll, immune deficiency (Imd) and glycolysis–gluconeogenesis pathways. Pearson correlation analysis revealed significant correlation between the top ten intestinal bacteria at the genus level and markedly enriched DEGs, also more were detected under high density situations. In conclusion, CHL has great potential as a novel protein source in the intensive farming of shrimp.\",\"PeriodicalId\":8184,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aninu.2024.04.008\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.04.008","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Combined intestinal microbiota and transcriptomic analysis to investigate the effect of different stocking densities on the ability of Pacific white shrimp (Litopenaeus vannamei) to utilize Chlorella sorokiniana
Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp () to utilize (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m), medium (MSD; 200 per m) and high (HSD; 300 per m) stocking densities for 8 weeks. The growth performance and resistance to (1.0 × 10 CFU/mL) of shrimp decreased with the increase of stocking density, but dietary CHL improved this result. Differences between the CHL and FM groups for . resistance were significant only under high-density conditions ( < 0.05). Significant interactions between stocking density and protein source were found on the activities of catalase (CAT), superoxide dismutase (SOD) and phenol oxidase (PO), and the contents of malondialdehyde (MDA) in the hepatopancreas and the activities of intestinal amylase, most of which were significantly different between CHL and FM groups only at high stocking density ( < 0.05). Analysis of 16S rDNA sequencing showed that dietary CHL increased the alpha diversity of intestinal microbiota, inhibited the colonization of pathogenic bacteria and enhanced the abundance of beneficial bacteria. Transcriptomic results showed that at high stocking densities, differentially expressed genes (DEGs) in the FM vs CHL group were mostly upregulated and primarily enriched in immune and metabolic related pathways including Toll, immune deficiency (Imd) and glycolysis–gluconeogenesis pathways. Pearson correlation analysis revealed significant correlation between the top ten intestinal bacteria at the genus level and markedly enriched DEGs, also more were detected under high density situations. In conclusion, CHL has great potential as a novel protein source in the intensive farming of shrimp.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.