Gabriel R. Palma, Conor Thornberry, Seán Commins, Rafael A. Moral
{"title":"从脑电图数据中理解学习:基于隐马尔可夫模型和混合模型的机器学习与特征工程相结合","authors":"Gabriel R. Palma, Conor Thornberry, Seán Commins, Rafael A. Moral","doi":"10.1007/s12021-024-09690-6","DOIUrl":null,"url":null,"abstract":"<p>Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation tasks. Frontal theta oscillations are thought to play an important role in spatial navigation and memory. Electroencephalography (EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However, multiple analytical methods are available to examine complex data structures, especially machine learning-based techniques. These methods have shown high classification performance, and their combination with feature engineering enhances their capability. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data. Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first, last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods on classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process the EEG data contribute to classification performance. We compared the classification performance of each trial with data gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found that more machine learning methods perform better classification using coordinate-based data. However, only deep neural networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner subjects in a spatial learning task.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Learning from EEG Data: Combining Machine Learning and Feature Engineering Based on Hidden Markov Models and Mixed Models\",\"authors\":\"Gabriel R. Palma, Conor Thornberry, Seán Commins, Rafael A. Moral\",\"doi\":\"10.1007/s12021-024-09690-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation tasks. Frontal theta oscillations are thought to play an important role in spatial navigation and memory. Electroencephalography (EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However, multiple analytical methods are available to examine complex data structures, especially machine learning-based techniques. These methods have shown high classification performance, and their combination with feature engineering enhances their capability. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data. Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first, last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods on classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process the EEG data contribute to classification performance. We compared the classification performance of each trial with data gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found that more machine learning methods perform better classification using coordinate-based data. However, only deep neural networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner subjects in a spatial learning task.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09690-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09690-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Understanding Learning from EEG Data: Combining Machine Learning and Feature Engineering Based on Hidden Markov Models and Mixed Models
Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation tasks. Frontal theta oscillations are thought to play an important role in spatial navigation and memory. Electroencephalography (EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However, multiple analytical methods are available to examine complex data structures, especially machine learning-based techniques. These methods have shown high classification performance, and their combination with feature engineering enhances their capability. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data. Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first, last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods on classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process the EEG data contribute to classification performance. We compared the classification performance of each trial with data gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found that more machine learning methods perform better classification using coordinate-based data. However, only deep neural networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner subjects in a spatial learning task.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.