不同放线菌物种的基因组为了解顺式调控基序和与关键性状相关的基因提供了线索

IF 4.4 1区 生物学 Q1 BIOLOGY
Xiaolong Li, Liuqing Huo, Xinyi Li, Chaofan Zhang, Miaofeng Gu, Jialu Fan, Changbin Xu, Jinli Gong, Xiaoli Hu, Yi Zheng, Xuepeng Sun
{"title":"不同放线菌物种的基因组为了解顺式调控基序和与关键性状相关的基因提供了线索","authors":"Xiaolong Li, Liuqing Huo, Xinyi Li, Chaofan Zhang, Miaofeng Gu, Jialu Fan, Changbin Xu, Jinli Gong, Xiaoli Hu, Yi Zheng, Xuepeng Sun","doi":"10.1186/s12915-024-02002-z","DOIUrl":null,"url":null,"abstract":"Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"5 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits\",\"authors\":\"Xiaolong Li, Liuqing Huo, Xinyi Li, Chaofan Zhang, Miaofeng Gu, Jialu Fan, Changbin Xu, Jinli Gong, Xiaoli Hu, Yi Zheng, Xuepeng Sun\",\"doi\":\"10.1186/s12915-024-02002-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02002-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02002-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

猕猴桃属于放线菌属,是一种独特的水果作物,其特点是现代栽培品种具有遗传多样性,在形态特征和对恶劣环境的适应性方面表现出显著的差异。然而,这种形态多样性的遗传机制在很大程度上仍然难以捉摸。我们报告了五个放线菌物种的高质量基因组,包括 Longicarpa 放线菌、A. macrosperma 放线菌、A. polygama 放线菌、A. reticulata 放线菌和 A. rufa 放线菌。通过比较基因组学分析,我们确定了放线菌属共有的三个全基因组复制事件,并发现了与猕猴桃特征性发展(包括维生素 C(VC)含量和果实毛发)有关的快速进化基因家族。研究还发现了一系列结构变异,这些变异可能是造成猕猴桃表型多样性的原因。值得注意的是,系统发生组分析揭示了放线菌属中的 76 个顺式调控元件,这些元件主要与应激反应、代谢过程和发育有关。在这些顺式调控元件中,有五个元件与已知的植物元件不相似,这表明猕猴桃中可能存在新的顺式调控元件。通过构建包含九种猕猴桃属植物的泛基因组,发现了猕猴桃属植物中 VC 含量极高的特异基因 DTZ79_23g14810。DTZ79_23g14810 的表达与 VC 浓度的动态变化密切相关,在猕猴桃植株的转基因根中过度表达该基因会导致 VC 含量增加。总之,不同放线菌物种的基因组和泛基因组不仅加深了我们对果实发育的了解,而且为促进基于基因组的猕猴桃育种提供了宝贵的基因组资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits
Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信