{"title":"多孔分布对聚合物电解质膜燃料电池阴极液水管理影响的分析","authors":"Faycel Khemili, Mustapha Najjari","doi":"10.1007/s12217-024-10134-8","DOIUrl":null,"url":null,"abstract":"<div><p>Proton Exchange Membrane Fuel Cell (PEMFC) technology has been receiving more attention recently and can play a more expanded role in space missions with low gravity or microgravity. The liquid water generation in the Gas Diffusion Layer (GDL) of a Proton Exchange Membrane Fuel Cell (PEMFC) increases the resistance to oxygen flow toward the catalyst layer. Water flooding inside the GDL can affect the PEMFC performance especially at higher current densities. Therefore, a good understanding of the effect of liquid water amount in the GDL is crucial to water management and, subsequently, to the performance of the fuel cell. The purpose of the present study is to investigate the effect of the microstructure characteristics of the GDL on the water flooding and liquid water distribution inside the GDL. A one-dimensional theoretical model has been developed. Results indicate that the porosity gradient has a significant effect on the liquid water saturation and the performance of the PEM fuel cell.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Analysis of the Effects of the Porosity Distribution on Liquid–Water Management in the Cathode of a Polymer Electrolyte Membrane Fuel Cell\",\"authors\":\"Faycel Khemili, Mustapha Najjari\",\"doi\":\"10.1007/s12217-024-10134-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton Exchange Membrane Fuel Cell (PEMFC) technology has been receiving more attention recently and can play a more expanded role in space missions with low gravity or microgravity. The liquid water generation in the Gas Diffusion Layer (GDL) of a Proton Exchange Membrane Fuel Cell (PEMFC) increases the resistance to oxygen flow toward the catalyst layer. Water flooding inside the GDL can affect the PEMFC performance especially at higher current densities. Therefore, a good understanding of the effect of liquid water amount in the GDL is crucial to water management and, subsequently, to the performance of the fuel cell. The purpose of the present study is to investigate the effect of the microstructure characteristics of the GDL on the water flooding and liquid water distribution inside the GDL. A one-dimensional theoretical model has been developed. Results indicate that the porosity gradient has a significant effect on the liquid water saturation and the performance of the PEM fuel cell.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10134-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10134-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Analytical Analysis of the Effects of the Porosity Distribution on Liquid–Water Management in the Cathode of a Polymer Electrolyte Membrane Fuel Cell
Proton Exchange Membrane Fuel Cell (PEMFC) technology has been receiving more attention recently and can play a more expanded role in space missions with low gravity or microgravity. The liquid water generation in the Gas Diffusion Layer (GDL) of a Proton Exchange Membrane Fuel Cell (PEMFC) increases the resistance to oxygen flow toward the catalyst layer. Water flooding inside the GDL can affect the PEMFC performance especially at higher current densities. Therefore, a good understanding of the effect of liquid water amount in the GDL is crucial to water management and, subsequently, to the performance of the fuel cell. The purpose of the present study is to investigate the effect of the microstructure characteristics of the GDL on the water flooding and liquid water distribution inside the GDL. A one-dimensional theoretical model has been developed. Results indicate that the porosity gradient has a significant effect on the liquid water saturation and the performance of the PEM fuel cell.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology