R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar
{"title":"模拟微重力对人工单细胞膜力学的影响","authors":"R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar","doi":"10.1007/s12217-024-10133-9","DOIUrl":null,"url":null,"abstract":"<div><p>The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 <i>±</i> 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics\",\"authors\":\"R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar\",\"doi\":\"10.1007/s12217-024-10133-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 <i>±</i> 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10133-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10133-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics
The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 ± 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology