{"title":"探索通过热振动诱导对流增强通风空腔中的传热:微重力和地面条件下","authors":"V. Navaneethakrishnan, M. Muthtamilselvan","doi":"10.1007/s12217-024-10132-w","DOIUrl":null,"url":null,"abstract":"<div><p>An integration of both passive and active techniques to enhance the heat exchange has emerged as a promising research area over the past few decades. Our present investigation focuses on the heat exchange due to thermal convection in a square cavity driven by a channel, utilizing ternary hybrid nanofluid. The governing equations were derived from the averaged formulations describing thermal vibrational convection, illustrated using the vorticity of the mean velocity and stream functions relevant to both the mean and fluctuating flows. The influence of vibration on the system is quantified using a dimensionless vibration factor, denoted as Gershuni number (Gs), which is proportional to the ratio of the mean vibrational buoyancy force to the product of momentum and thermal diffusivities. All computations were conducted with fixed values of the Prandtl number (Pr = 6.1) and Reynolds number (Re = 100). The influence of physical parameters, including the Grashof number (<span>\\(10^3 \\le Gr \\le 10^6\\)</span> ), Gershuni number (<span>\\(10^3 \\le Gs \\le 10^6\\)</span>), and volume fraction of nanomaterials (<span>\\(0\\% \\le \\Phi \\le 4\\%\\)</span>), particularly under two scenarios: microgravity (<span>\\(Gr= 0\\)</span>) and terrestrial conditions, on the streamlines for both the mean and fluctuating flows, isotherms, and mean Nusselt number are discussed graphically. Numerical results indicate that an increase of Grashof number boosts heat exchange by 250% under buoyancy effects. Elevating nanomaterial volume fractions enhances thermal conductivity, increasing heat exchange by 30%. However, heightened thermal vibration reduces heat exchange.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Enhanced Heat Transfer in a Ventilated Cavity through Thermal Vibration-Induced Convection: Under Microgravity and Terrestrial Conditions\",\"authors\":\"V. Navaneethakrishnan, M. Muthtamilselvan\",\"doi\":\"10.1007/s12217-024-10132-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An integration of both passive and active techniques to enhance the heat exchange has emerged as a promising research area over the past few decades. Our present investigation focuses on the heat exchange due to thermal convection in a square cavity driven by a channel, utilizing ternary hybrid nanofluid. The governing equations were derived from the averaged formulations describing thermal vibrational convection, illustrated using the vorticity of the mean velocity and stream functions relevant to both the mean and fluctuating flows. The influence of vibration on the system is quantified using a dimensionless vibration factor, denoted as Gershuni number (Gs), which is proportional to the ratio of the mean vibrational buoyancy force to the product of momentum and thermal diffusivities. All computations were conducted with fixed values of the Prandtl number (Pr = 6.1) and Reynolds number (Re = 100). The influence of physical parameters, including the Grashof number (<span>\\\\(10^3 \\\\le Gr \\\\le 10^6\\\\)</span> ), Gershuni number (<span>\\\\(10^3 \\\\le Gs \\\\le 10^6\\\\)</span>), and volume fraction of nanomaterials (<span>\\\\(0\\\\% \\\\le \\\\Phi \\\\le 4\\\\%\\\\)</span>), particularly under two scenarios: microgravity (<span>\\\\(Gr= 0\\\\)</span>) and terrestrial conditions, on the streamlines for both the mean and fluctuating flows, isotherms, and mean Nusselt number are discussed graphically. Numerical results indicate that an increase of Grashof number boosts heat exchange by 250% under buoyancy effects. Elevating nanomaterial volume fractions enhances thermal conductivity, increasing heat exchange by 30%. However, heightened thermal vibration reduces heat exchange.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10132-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10132-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Exploring Enhanced Heat Transfer in a Ventilated Cavity through Thermal Vibration-Induced Convection: Under Microgravity and Terrestrial Conditions
An integration of both passive and active techniques to enhance the heat exchange has emerged as a promising research area over the past few decades. Our present investigation focuses on the heat exchange due to thermal convection in a square cavity driven by a channel, utilizing ternary hybrid nanofluid. The governing equations were derived from the averaged formulations describing thermal vibrational convection, illustrated using the vorticity of the mean velocity and stream functions relevant to both the mean and fluctuating flows. The influence of vibration on the system is quantified using a dimensionless vibration factor, denoted as Gershuni number (Gs), which is proportional to the ratio of the mean vibrational buoyancy force to the product of momentum and thermal diffusivities. All computations were conducted with fixed values of the Prandtl number (Pr = 6.1) and Reynolds number (Re = 100). The influence of physical parameters, including the Grashof number (\(10^3 \le Gr \le 10^6\) ), Gershuni number (\(10^3 \le Gs \le 10^6\)), and volume fraction of nanomaterials (\(0\% \le \Phi \le 4\%\)), particularly under two scenarios: microgravity (\(Gr= 0\)) and terrestrial conditions, on the streamlines for both the mean and fluctuating flows, isotherms, and mean Nusselt number are discussed graphically. Numerical results indicate that an increase of Grashof number boosts heat exchange by 250% under buoyancy effects. Elevating nanomaterial volume fractions enhances thermal conductivity, increasing heat exchange by 30%. However, heightened thermal vibration reduces heat exchange.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology