{"title":"带鳍片的高温液态金属热管启动性能实验研究","authors":"Zhi-Hu Xue, Wei Qu","doi":"10.1007/s12217-024-10137-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the experimental results of a high-temperature heat pipe with fins at horizontal. The heat pipe tube is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The height and thickness of the fins are 13 mm and 1 mm, and the gap distance between two fins is 5 mm. The wall material of the tube container and fins both are stainless steel. In order to compare the impact of the fins on the startup performance of the heat pipe, a plain-tube high-temperature heat pipe without fins which has the same dimensions is also comparatively experimented. The experimental results show that the finned heat pipe can start successfully and its end of condenser behaves bright red color, which is roughly in accordance with the results of the plain-tube heat pipe. The comparative results also show that the startup time of full startup and the temperature difference between evaporator and condenser after fully starting for the finned heat pipe and plain-tube heat pipe are similarly same. However, adding fins in condenser have a great effect on the temperature rise-rate during starting process and the quasi-steady or equilibrium temperature after startup between the results of two heat pipes.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins\",\"authors\":\"Zhi-Hu Xue, Wei Qu\",\"doi\":\"10.1007/s12217-024-10137-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the experimental results of a high-temperature heat pipe with fins at horizontal. The heat pipe tube is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The height and thickness of the fins are 13 mm and 1 mm, and the gap distance between two fins is 5 mm. The wall material of the tube container and fins both are stainless steel. In order to compare the impact of the fins on the startup performance of the heat pipe, a plain-tube high-temperature heat pipe without fins which has the same dimensions is also comparatively experimented. The experimental results show that the finned heat pipe can start successfully and its end of condenser behaves bright red color, which is roughly in accordance with the results of the plain-tube heat pipe. The comparative results also show that the startup time of full startup and the temperature difference between evaporator and condenser after fully starting for the finned heat pipe and plain-tube heat pipe are similarly same. However, adding fins in condenser have a great effect on the temperature rise-rate during starting process and the quasi-steady or equilibrium temperature after startup between the results of two heat pipes.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10137-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10137-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins
This paper presents the experimental results of a high-temperature heat pipe with fins at horizontal. The heat pipe tube is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The height and thickness of the fins are 13 mm and 1 mm, and the gap distance between two fins is 5 mm. The wall material of the tube container and fins both are stainless steel. In order to compare the impact of the fins on the startup performance of the heat pipe, a plain-tube high-temperature heat pipe without fins which has the same dimensions is also comparatively experimented. The experimental results show that the finned heat pipe can start successfully and its end of condenser behaves bright red color, which is roughly in accordance with the results of the plain-tube heat pipe. The comparative results also show that the startup time of full startup and the temperature difference between evaporator and condenser after fully starting for the finned heat pipe and plain-tube heat pipe are similarly same. However, adding fins in condenser have a great effect on the temperature rise-rate during starting process and the quasi-steady or equilibrium temperature after startup between the results of two heat pipes.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology