{"title":"芯片设计中基于强化学习的宏单元无重叠布局","authors":"Tao Yu, Peng Gao, Fei Wang, Ru-Yue Yuan","doi":"10.1002/cta.4235","DOIUrl":null,"url":null,"abstract":"<p>Due to the increasing complexity of chip design, existing placement methods still have many shortcomings in dealing with macro cells coverage and optimization efficiency. Aiming at the problems of layout overlap, inferior performance, and low optimization efficiency in existing chip design methods, this paper proposes an end-to-end placement method, SRLPlacer, based on reinforcement learning. First, the placement problem is transformed into a Markov decision process by establishing the coupling relationship graph model between macro cells to learn the strategy for optimizing layouts. Secondly, the whole placement process is optimized after integrating the standard cell layout. By assessing the public benchmark ISPD2005, the proposed SRLPlacer can effectively solve the overlap problem between macro cells while considering routing congestion and shortening the total wire length to ensure routability.</p>","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"53 2","pages":"1159-1170"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-overlapping placement of macro cells based on reinforcement learning in chip design\",\"authors\":\"Tao Yu, Peng Gao, Fei Wang, Ru-Yue Yuan\",\"doi\":\"10.1002/cta.4235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the increasing complexity of chip design, existing placement methods still have many shortcomings in dealing with macro cells coverage and optimization efficiency. Aiming at the problems of layout overlap, inferior performance, and low optimization efficiency in existing chip design methods, this paper proposes an end-to-end placement method, SRLPlacer, based on reinforcement learning. First, the placement problem is transformed into a Markov decision process by establishing the coupling relationship graph model between macro cells to learn the strategy for optimizing layouts. Secondly, the whole placement process is optimized after integrating the standard cell layout. By assessing the public benchmark ISPD2005, the proposed SRLPlacer can effectively solve the overlap problem between macro cells while considering routing congestion and shortening the total wire length to ensure routability.</p>\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":\"53 2\",\"pages\":\"1159-1170\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cta.4235\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cta.4235","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Non-overlapping placement of macro cells based on reinforcement learning in chip design
Due to the increasing complexity of chip design, existing placement methods still have many shortcomings in dealing with macro cells coverage and optimization efficiency. Aiming at the problems of layout overlap, inferior performance, and low optimization efficiency in existing chip design methods, this paper proposes an end-to-end placement method, SRLPlacer, based on reinforcement learning. First, the placement problem is transformed into a Markov decision process by establishing the coupling relationship graph model between macro cells to learn the strategy for optimizing layouts. Secondly, the whole placement process is optimized after integrating the standard cell layout. By assessing the public benchmark ISPD2005, the proposed SRLPlacer can effectively solve the overlap problem between macro cells while considering routing congestion and shortening the total wire length to ensure routability.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.